Optimal Auctions with Financial Externalities*

Emiel Maasland'and Sander Onderstal*

January 20, 2006

Abstract
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pected revenue is increasing in the financial externality, and each bidder’s expected
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1 Introduction

We consider the problem of a seller who aims at selling one indivisible object in an optimal
auction in an environment with financial externalities. An optimal auction is a feasible
auction mechanism that maximizes the seller’s expected revenue. To get an idea about
the environment, imagine that two firms bid for a license to increase their capacity in
the market in which they both compete. When financial markets are assumed not to
work perfectly, the winning firm is able to invest less, the higher the price it pays in the
auction. This is an advantage to the losing firm so that its utility depends on how much the
winner pays. Throughout the paper, we will refer to the effect of other bidders’ payments
on a bidder’s utility as a financial externality.! Especially in high stake auctions, like
the UMTS auctions which took place in Europe in 2000 and 2001, financial externalities
may influence bidding behavior (Maasland and Onderstal, 2005; Borgers and Dustmann,
2005).

Myerson (1981) initiates research on optimal auctions in an environment without fi-
nancial externalities.?® He derives three important results. The first is the celebrated
revenue-equivalence theorem, which states that the expected utility of both the bidders
and the seller is completely determined by the allocation rule of the feasible auction
mechanism and the utilities of the lowest types. We refer to this result as the weak
revenue-equivalence theorem. Second, with symmetric bidders, all standard auctions yield
the same expected revenue (the first strong revenue-equivalence theorem). Third, with
symmetric bidders, all standard auctions are optimal when the seller imposes the same,
optimal reserve price (the second strong revenue-equivalence theorem).*

With asymmetric bidders, under a regularity condition, Myerson shows that the opti-

'In our companion paper (Maasland and Onderstal, 2005), we study equilibrium bidding in first-
price and second-price sealed-bid auctions in an environment with financial externalities. Theories of
equilibrium bidding in related environments can be found in Engelbrecht-Wiggans (1994), and in Bulow
et al. (1999).

2Independently and simultaneously, Riley and Samuelson (1981) derive similar results.

3Myerson (1981) is followed by, among others, Engelbrecht-Wiggans (1988), Cremer and McLean
(1985, 1988), Maskin and Riley (1989), McAfee and Reny (1992), and Bulow and Klemperer (1996).

4Myerson does not mention this result explicitly, but it follows from his study. Riley and Samuelson
(1981) explicitly derive the result in an independent private values model.



mal auction assigns the object to the bidder with the highest marginal revenue, provided
that the highest marginal revenue is nonnegative. In the case that all bidders have a
negative marginal revenue, the seller keeps the object to himself. Moreover, the utilities
of the lowest types are equal to zero in an optimal auction. For this result, Myerson
assumes that (1) the seller can prevent resale of the object after the auction, and (2) he
can fully commit to not selling the object. He makes the first assumption as the seller
may need to misassign the object, i.e., assign it to a bidder who does not have the highest
value for it. He needs the second assumption as the seller optimally withholds the object
when only low valued bidders participate. When these assumptions hold, we speak of a
Myersonean world.

Ausubel and Cramton (1999) argue that the assumptions of a Myersonean world are
not always realistic and study optimal auctions in a setting in which (1) the seller cannot
prevent the object changing hands in a perfect resale market,” and (2) he cannot commit to
keeping the object. We will refer to this setting as a Coasean world, as the first assumption
is related to the Coase theorem (Coase, 1960) and the second to the Coase conjecture
(Coase, 1972). Haile (1999) proves that, with symmetric bidders, equilibrium bidding in
standard auctions does not change when bidders are offered a resale market opportunity
after the auction. With this result, the third strong revenue-equivalence theorem can be
derived: In a Coasean world, with symmetric bidders, all standard auctions (without
reserve price) are optimal.

In this paper, we modify Myerson’s model by allowing for financial externalities, given
by an exogenous parameter ¢. We assume a model with independent private signals,
which has independent private values models and pure common value models as special
cases. With symmetric bidders, our model is a special case of the affiliated private signals
model of Milgrom and Weber (1982). We will show that with financial externalities,
the weak revenue-equivalence theorem remains valid. Also the conditions for optimality

remain the same as in Myerson.

5In a perfect resale market, the object, when being sold in the auction, always ends up in the hands
of the bidder with the highest value.



Our companion paper (Maasland and Onderstal, 2005) shows that the strong revenue-
equivalence results are not valid when bidders are confronted with financial externalities.
The first strong revenue-equivalence theorem does not hold because the first-price sealed-
bid auction yields less expected revenue than the second-price sealed-bid auction. The
driving force behind this result is that the expected utility of the lowest type in the
first-price auction is higher than the expected utility of the lowest type in the second-
price auction. The second strong revenue-equivalence theorem does not hold for two
reasons. First, a standard auction with reserve price gives the lowest type strictly positive
expected utility because of the payments by others. Second, standard auctions may not
have equilibria in which active bidders submit bids according to a function that is strictly
increasing in their type, so that the winner of the object is not always the bidder with
the highest marginal revenue. The third strong revenue-equivalence theorem fails to hold
as in both the first-price and the second-price sealed-bid auction, the lowest type gets a
strictly positive expected utility.

In this paper, we will show that the lowest-price all-pay auction is optimal under
a symmetry assumption. For a Coasean world, we derive that this auction is optimal,
as the lowest type gets zero expected utility. Additionally, we find a two-stage feasible
auction mechanism which solves the seller’s problem in a Myersonean world. In the first
stage of this mechanism, all bidders pay an entry fee, in order to make sure that the
lowest type gets zero expected utility. If at least one of the bidders indicates not to be
willing to accept the entry fee, the seller keeps the object to himself, and no payments
are made. Otherwise, in the second stage, the lowest-price all-pay auction with a reserve
price is played. The optimality of the lowest-price all-pay auction with a reserve price
follows from the observation that, if it assigns the object, it always assigns the object
to the bidder with the highest marginal revenue. In both worlds, in an optimal auction,
the highest possible expected revenue is strictly increasing in ¢, and a bidder’s expected
utility is independent of .

The following papers are related to ours. Goeree et al. (2005) apply our results to char-

ity auctions, i.e., auctions of which the revenue is transferred to a charitable organization.



Jehiel et al. (1996) study optimal auctions in environments with allocative externalities,
i.e., environments in which a loser’s utility depends on the identity of the winner (not on
how much she pays). They derive the optimality of a feasible auction mechanism which is
similar to the two-stage mechanism that is optimal in our environment. In the first stage
of this mechanism, bidders are asked whether to participate or not. In the second stage,
depending on which bidders participate, the object remains in the hands of the seller,
or is allocated to one of the bidders. Participating bidders may receive or pay money
from/to the seller. Lu (2005) generalizes our and Jehiel et al.’s (1996) results in a model
that allows for both financial externalities and allocative externalities, using our weak
revenue equivalence theorem as a starting point. He shows that it could be a property
of the optimal mechanism that the seller destroys the object. Finally, Orzen (2005) tests
the lowest-price all-pay auction in a laboratory experiment. He observes that this auction
is a better fund-raising mechanism than the first-price all-pay auction, a lottery, and a
voluntary contribution mechanism.

The set-up of this paper is as follows. In the following section, we present our model.
In Section 3, we derive the weak revenue equivalence theorem in an environment with
financial externalities. Section 4 and 5 include an analysis of optimal auctions in a Coasean
world and a Myersonean world respectively. Section 6 contains an conclusion. The proofs

of all propositions and lemmas are relegated to the Appendix.

2 The model

Consider a seller who wishes to sell an indivisible object to one out of n risk neutral
bidders, numbered 1,2,...,n. The seller aims at finding a feasible auction mechanism
which gives him the highest possible expected revenue. We assume that the seller does
not attach any value to the object.

We use Milgrom and Weber’s (1982) model as a starting point with independent signals

instead of affiliated signals. We assume that each bidder i receives a one-dimensional



private signal ¢; (we also say that bidder i is of type t;). We will let v;(t) denote the value
of the object for bidder i given the vector t = (t1, ...,%,) of all signals. Special cases are
independent private value models (v;(t) only depends on ¢;), and common value models
(vi(t) = v;(t) for all 7, j,t). Without loss of generality, we assume that the signals ¢; are
independently drawn from the uniform distribution on the interval [0, 1].°

Define the sets

T =10,1]"

and

T,Z' = [O, 1]”,

with typical elements t = (¢1,...,t,) and t_; = (t1, ..., t;_1, tir1, ..., ) TESpeCtively.

We make the following assumptions on the functions v;.

Value Differentiability: v; is differentiable in all its arguments, for all ,t

Value Monotonicity: v;(t) > 0, 8”1 ) >0, 8”1 ) >0, and 8“’ t) > a”’ ) for all i, j, t

Value Differentiability ensures the existence of each bidder’s marginal revenue (which
will be defined later). Value Monotonicity indicates that all bidders are serious and that
bidders’ values are strictly increasing in their own signal and weakly in the signals of the
others. Moreover, it includes a single crossing property.

In Sections 4 and 5, we make the following extra assumption.
Symmetry: ’Ul‘<...,tl‘, ...,t]‘, ) = ’Uj(...,tj, '--7t7ﬁ7 ) for all ti, tj, Z,j

Symmetry may be crucial for the existence of efficient equilibria in standard auctions.

Value Differentiability, Value Monotonicity, and Symmetry together ensure that the bid-

6Suppose the signals t; are drawn from strictly increasing distribution functions F;. Such a model is
isonilorphiNC to a model vyith uniforrrlly distributed signals ¢; and value functions v;, where t; = F;(t;) and
f}i (tly ey tn) = Ui(Fl_l(tl)a ey ijl(tn))'



der with the highest signal is also the bidder with the highest value. These assumptions
therefore imply that the seller assigns the object efficiently if and only if the bidder with
the highest signal gets it.

When Symmetry holds, let us define v(z, y) as the expected value that bidder i assigns
to the object, given that her signal is z, and that the highest signal of all the other bidders
is equal to y:

v(z,y) = F {vi(t)|ti = x,r?ggitj = y} :
By Symmetry, v does not depend on 1.

Throughout the paper, we use the following definition of bidder ¢’s marginal revenue.

This expression can be derived, like in Bulow and Roberts (1989) (for independent pri-
vate values) and Bulow and Klemperer (1996) (for independent private signals), from
the monopolist’s problem in third-degree price discrimination. This can be done by con-
structing bidder ¢’s demand curve from her value function and signal distribution function,
and differentiate the related monopolist’s profit function with respect to quantity. When
Symmetry is satisfied, let MR(t) =MR;,(t) = ... = MR,(t). We make the following

assumption on M R;.
MR Monotonicity: M R;(t) is strictly increasing in ¢; for all 7, t.

MR Monotonicity is equivalent to the assumption made in standard micro-economic
theory that the monopolist’s demand curve is downward-sloping.

The bidders are risk-neutral expected utility maximizers. In order to incorporate the
financial externalities, we insert an exogenous nonnegative parameter ¢ into the bidders’
utility functions. This parameter indicates each bidder’s interest in the others’ payments.

The utility of bidder i is

vi—:ri+g02xj

JFi



if she wins the object, and

—IH—(PZ%‘

J#i
otherwise, where x; is the payment by bidder j to the seller. We assume ¢ € [0, ﬁﬂ

3 Weak revenue equivalence

Using the Revelation Principle of Myerson (1981), we may assume, without loss of gen-
erality, that the seller only considers feasible auction mechanisms in the class of feasible

direct revelation mechanisms.® Let (p,x) be a feasible direct revelation mechanism, with
p: T —[0,1]",

where

> pi(t) <1,

J
and

x: T — R".
We interpret p;(t) as the probability that bidder i wins, and x;(t) as the expected pay-
ments by ¢ to the seller when t is announced.

Bidder i’s utility of (p,z) given t is given by
vi()pi(t) — i(t) + 0 Y wi(t),
J#

so that bidder 4’s interim utility of (p,z) can be written as

Uip, 2, t;) = / [os(E)pi(t) — mi(t) + 0 3 a(6)]dt s, (1)

T, JF#i

"In the case that ¢ € [0, ﬁ), a bidder’s interest in her own payments is larger than or equal to the

sum of the other bidders’ interest in her payments. In Footnote 10, we will discuss the consequences of
allowing ¢ to be larger than ﬁ

8 A feasible direct revelation mechanism is an auction mechanism in which each bidder is asked to
announce her type, which satisfies individual rationality conditions, incentive compatibility conditions,
and straightforward restrictions on the allocation rule.



Similarly, the seller’s expected utility of (p, z) is

with dt = dt,...dt,.

The following two lemmas will be used to solve the seller’s problem.

Lemma 1 Let (p,x) be a feasible direct revelation mechanism. Then the interim utility
of (p,z) for bidder i is given by

t;

Us(p, 2, 15) = Us(p, 2,0) + / wi(ss)ds, )
0
with

wi(ts) = By, {p ’(t)avait(::)} '

Lemma 2 Let (p,x) be a feasible direct revelation mechanism. Then the seller’s expected

revenue from (p,x) is given by

{ZMRI_ } 1);_: : (py O). 5

UO(p7 .13) =

From Lemmas 1 and 2, it immediately follows that the weak revenue-equivalence

theorem remains valid with financial externalities.

Corollary 1 Both the seller’s and the bidders’ expected utility from any feasible auction
mechanism is completely determined by the probability function p and the utilities of the

lowest types U;(p, x,0) for all i related to its equivalent feasible direct revelation mechanism

(p, ).



Observe from Lemmas 1 and 2 respectively that, provided that the expected utility
of the lowest type remains zero when ¢ is varied, a bidder’s interim utility does not
depend on ¢, whereas the seller’s expected revenue is increasing in . An intuition for
the first observation is the following. Suppose that bidders, instead of receiving financial
externalities, obtain a fraction ¢ of what the other bidders pay in the auction. Then
Myerson (1981) shows that the interim utility of a bidder does not depend on ¢. From
a bidder’s perspective, these two situations are equivalent, and the observation follows
immediately. The intuition for the second observation follows from the first. Fix the
payments of all bidders. Then a bidder’s expected utility increases with ¢. Therefore, to
make sure that a bidder’s interim utility does not depend on ¢, her expected payment
must increase as well.

From Lemma 2, interesting insights can be drawn with respect to optimal auctions.
Observe that in the expression for the seller’s expected revenue, a key role is played by
the marginal revenues of the bidders. Suppose that the seller finds a feasible auction
mechanism that assigns the object to the bidder with the highest marginal revenue, pro-
vided that the marginal revenue is nonnegative, and that leaves the object in the hands of
the seller if the highest marginal revenue is negative. Suppose also that this mechanism
gives the lowest types zero expected utility. Then, under MR Monotonicity,’ with the
individual rationality constraints U;(p,x,0) > 0, this mechanism is optimal. In Section
5, we will discuss this observation in more detail, and we will show how the seller can

construct an optimal auction in an environment with financial externalities.

4 Optimal auctions in a Coasean world

For the remainder of the analysis, we assume that Symmetry holds. Consider the lowest-

price all-pay auction, which has the following rules. All bidders simultaneously and inde-

9This assumption is needed for incentive compatibility considerations. See Myerson (1981) for a further
discussion on the consequences of relaxing this assumption.

10



pendently announce a bid to the seller. The bidder who announces the highest bid gets
the object, with ties being broken among the highest bidders with equal probability. Each
bidder has to pay the lowest submitted bid. We will show now that in a Coasean world,
the lowest-price all-pay auction is optimal.

Recall that a Coasean world is a situation in which (1) the seller cannot prevent a
perfect resale market, and (2) the seller cannot withhold the object. These assumptions

impose two extra restrictions on the seller’s problem, namely
for all t and 4, p;(t) > 0 only if ¢; = maxt; (4)
J

and

for all t, Zpi(t) =1 (5)

respectively. In fact, these restrictions fix p;(t) (apart from the zero mass events t; = t;
for some 7 and j) in such a way that the object is always assigned to the bidder with the
highest signal.

As restrictions (4) and (5) fix the allocation rule p, by Lemma 2, a sufficient condition
for the optimality of a feasible auction mechanism is that the lowest types expect zero
utility (from the auction plus resale market). The lowest-price all-pay auction is a natural
candidate to fulfill this requirement. To see this, suppose that in equilibrium, the auction
is efficient, and that a bidder with the lowest type considers to bid 0. Then, the lowest
type wins with probability 0 and she and all the other bidders have to pay b. The expected
utility of the lowest type equals —b + (n — 1)pb, which is strictly negative for all b > 0

if ¢ € [0,-L-). Therefore, the lowest type prefers to bid zero, so that she obtains zero

n—1

expected utility as, when she is present, each bidder pays zero in the auction.!”

Proposition 1 characterizes the symmetric equilibrium for the lowest-price all-pay auc-
tion. By a standard argument, the equilibrium bid function must be strictly increasing
and continuous. Let U(t,s) be the utility for a bidder with signal ¢ who behaves as if

having signal s, whereas the other bidders play according to the equilibrium bid function.

10Note that if ¢ > ﬁ, for each bidder it is a dominant strategy to bid as much as possible, which
immediately implies that the lowest-price all-pay auction is optimal.

11



A necessary equilibrium condition is that

oU(t, s)

—\2

0s

at s = t. From this condition, a differential equation can be derived, from which the
equilibrium bid function is uniquely determined (at least if we restrict our attention
to symmetric bid functions). Observe that indeed the lowest type bids zero, that the

equilibrium is efficient, and that bids increase with .

Proposition 1 Suppose that all bidders submit a bid according to the following bid func-

tion.
t

_ n-—1 v(y, y)y"
PO~ o) / 1—y

Then B constitutes the unique symmetric Bayesian Nash equilibrium of the lowest-price

all-pay auction. The outcome of this auction is efficient.

In Proposition 2, we establish that the presence of a perfect resale market has no
influence on equilibrium behavior. This result follows from Maasland and Onderstal
(2002) in which we derive that any Bayesian Nash equilibrium of any auction (without
resale market) which leads to an efficient assignment of the object is also a Bayesian Nash
equilibrium if the same auction is followed by a resale market in which the same bidders
participate. As B constitutes an efficient Bayesian Nash equilibrium, the proposition

must be true.

Proposition 2 The bid function B described in Proposition 1 establishes a Bayesian
Nash equilibrium of the lowest-price all-pay auction when this auction is followed by a

(perfect) resale market with the same bidders participating.

"Tn case of a uniform signal distribution on the interval [0,1], independent private values, and two
bidders, the unique symmetric differentiable Bayesian Nash equilibrium of the lowest-price all-pay auction
is established by

B(t) = ﬁ[—t “log(1—#)].

12



The optimality of the lowest-price all-pay auction immediately follows.'?

Proposition 3 Consider a Coasean world. Suppose that in the lowest-price all-pay auc-
tion, bidders play according to the equilibrium bid function given in Proposition 1. Then

the lowest-price all-pay auction is optimal.

The following result immediately follows from Lemmas 1 and 2, Propositions 1-3, and
the fact that the lowest-price all-pay auction is efficient with zero expected utility for the

lowest type:

Corollary 2 Consider a Coasean world. Then the highest possible expected revenue is

strictly increasing in . In an optimal auction, a bidder’s expected utility is independent

of .

5 Optimal auctions in a Myersonean world

Next, consider a Myersonean world. As said, Lemma 2 implies that a feasible auction
mechanism is optimal when it yields zero expected utility for the lowest type, leaves the
object in the hands of the seller when all marginal revenues are negative, and assigns the
object to the bidder with the highest marginal revenue otherwise. Now, consider two-
stage auction mechanism I'. In the first stage of I', the bidders are asked whether or not
to participate. If at least one of the bidders refuses to participate, the game ends, and the

seller keeps the object to himself. Otherwise, each bidder pays the seller the same entree

2Tn the light of Myerson and Satterthwaite (1983), the assumption of a perfect resale market seems
rather strong. However, if MR Monotonicity holds, the assumption of a perfect resale market can be
relaxed to allow for any type of resale market. In Maasland and Onderstal (2002) we show that auctions
with efficient equilibria still have an equilibrium with efficient bidding in the case of a resale market.
Therefore, when MR Monotonicity is satisfied, Lemma 2 implies that every efficient auction with zero
utility for the lowest type (which includes the lowest-price all-pay auction) is optimal under the restriction
that the seller cannot keep the object to himself.

13



fee, which we denote by ®. Then the bidders enter the second stage, and play the lowest-
price all-pay auction with reserve price R. Fach bidder follows the strategy to choose
“participate” in the first stage, and to play according to a Bayesian Nash equilibrium in
the second stage.

The lowest-price all-pay auction with a reserve price R has the following rules. Each
bidder either submits a bid of at least R, or abstains from bidding. If all bidders abstain,
the object remains in the hands of the seller, otherwise it will be sold to the bidder with
the highest bid. In the case of ties, the winner is chosen from the highest bidders with
equal probability. All bidders who submitted a bid pay the auction price, which is equal to
the lowest submitted bid in the case that all bidders participate and equal to R otherwise.

Proposition 4 shows that the lowest-price all-pay auction has an equilibrium in which,
up to a threshold type ¢, bidders do not submit a bid, and all bidders with a type t > ¢
bid h(t,t), with

N — n—1 oy, )y
D) = Rt s / ey

We derive h using the same differential equation as for the lowest-price all-pay auction
without a reserve price, with boundary condition h(%\,/t\) = R. Observe that h(t,%\) is
strictly increasing in both ¢ and ¢. In equilibrium, a type t is indifferent between bidding

R and submitting no bid.

Proposition 4 Let Bf(t), the bid of a bidder with signal t, be given by

h(t,t)  fort>1t
BE(t) = ’ ~
®) { “no bid” fort <t,

where T is the unique solution to

+)

o(t.y)dy" ' = R. (6)
0

Then B constitutes a symmetric Bayesian Nash equilibrium of the lowest-price all-pay

auction with a reserve price R.

14



Proposition 5 shows that when MR Monotonicity is satisfied, I" is optimal if the entry
fee is given by (7). In an optimal auction, the seller’s revenue is strictly increasing in ¢,

and a bidder’s expected utility does not depend on .

Proposition 5 Consider a Myersonean world. Suppose that MR Monotonicity is satis-

fied. Let the entry fee in I' be given by

U

1—p(n—1)

where u 1s the expected utility of the lowest type in the lowest-price all-pay auction when

)

(7)

the equilibrium of Proposition 4 is played. Also, suppose that the reserve price R is such
that for the threshold type tM R(tA) = 0 holds, that all bidders choose “participate” in
equiltbrium, and that bidders play according to the equilibrium given in Proposition 4.

Then I' is optimal.

The next corollary follows from Lemmas 1 and 2, and Propositions 4 and 5.

Corollary 3 Consider a Myersonean world. Suppose that MR Monotonicity is satisfied.
Then the highest possible expected revenue is strictly increasing in . In an optimal

auction, a bidder’s expected utility is independent of .

6 Concluding remarks

In this paper, we have examined optimal auctions with financial externalities. We have
established the optimality of the lowest-price all-pay auction in this environment. In a
Coasean world, the lowest-price all-pay auction itself is optimal. In a Myersonean world,
we have found an optimal two-stage auction mechanism in which each bidder pays an

entry fee, and plays the lowest-price all-pay auction with a reserve price.

15



Several questions are still open for further research. So far it is unclear which auction
is optimal when we allow for asymmetric financial externalities. Another open question is
whether the lowest-price all-pay auction performs well in practice. The auction seems to
be very sensitive for collusion. Moreover, apart from the efficient equilibrium, the lowest-
price all-pay auction also has highly inefficient equilibria in the case of two bidders.!® It
is easily verified that there is an equilibrium in which one bidder submits a very high
bid, and the other bids zero. In addition, the auction is sensitive to ‘shill bidding’, i.e.,
a bidder has an incentive to hire someone to bid zero in the auction while she submits a
very high bid. Doing so, she wins the object for a price of zero. An experimental study

may put some light on the performance of the lowest-price all-pay auction in practice.'*

7 Appendix
Throughout the Appendix, we will let FI'' and fIU [FI*~=1 and f"~1] denote the cumu-

lative distribution function and density function of max;.q t; [min;. ¢;].

PrOOF OF LEMMA 1. Incentive compatibility implies

Ui(p, @, i) > Us(p,x,t:) + By {pi(t)(vi(si, t i) —vilt))}

for all s;, t; and t_;, or, equivalently

BOLb) b {n©% 2 = uw) ®

at all points where p; is differentiable in ¢; (by Value Differentiability, v; is differentiable
at any t;). By integration of (8), we get (2). W

13For three or more bidders, there is no equilibrium in which one bidder bids very high and the other
bidders bid zero, because in such an equilibrium one of the low bidders has an incentive to overbid the
high bidder.

4 0rzen’s (2005) experiment is a good starting point. However, he considers a situation where ¢ > ﬁ,
in which shill bidding is not attractive.

16



PrOOF OF LEMMA 2. Define

X, = / wi(t)dt, (9)

T
V= / ()i (), (10)

T

and
1
0
By (1), we have, for all i,

Vi=Vi-Xi+9) X, (12)

J#
Adding the equations in (12) over ¢ and rearranging terms implies that the seller’s expected

revenue from a feasible direct revelation mechanism (p, x) is given by

Us(p,x) = ZXi = 11__90(—”1:1) (13)

i=1

Taking the expectation of (2) over t; and using integration by parts, we obtain

so that (3) follows with (13) and (9)-(11). W

PrOOF OF PROPOSITION 1. The following observations imply that a symmetric
equilibrium bid function must be strictly increasing and continuous. First, a higher type
of a bidder cannot submit a lower bid than a lower type of the same bidder. (If the low
type gets the same expected surplus from strategies with two different probabilities of
being the winner of the object, the high type strictly prefers the strategy with the highest
probability of winning, so that the high type will not submit a lower bid than the low
type.) Second, B(t) cannot be constant on an interval [t',¢"]. (By bidding slightly higher,

t” can largely improve its probability of winning, while only marginally influencing the
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payments by her and the other bidders.) Third, B(t) cannot be discontinuous at any t.
(Suppose that B(t) makes a jump from b to b at t*. A type just above ¢* has an incentive
to deviate to b. Doing so, she is able to substantially decrease the expected auction price,
while just slightly decreasing the probability of winning the object.)

We proceed assuming a strictly increasing and differentiable equilibrium bid function.
The probability of having the lowest bid for a bidder with signal ¢ is equal to 1 — F=1(¢).

If 2 is the auction price, then, in terms of utility, each bidder loses (1 — ¢(n—1))z. Define

B(s) = (1= ¢(n—1))B(s),
and U(t,s) as the expected utility of a bidder with type ¢ who misrepresents herself as
type s given that the other bidders report truthfully. Then,

S S

Ult,s) = / o(t,y)dF () — [ = FY(s)] B(s) - / Bly)dFiny).

0 0
The first term of the RHS refers to the value of the object when the highest bid is
submitted, the second to the payments made in the case that the lowest bid is submitted,

and the third to the expected payments in the case that another bidder submits a lower

bid. The FOC of the equilibrium is given by
o(t, ) fI) + frN 0B — [1 = FU(@)] B'(t) — fIB(t) = 0. (14)

With some manipulation, we get

B(t) = B(O)+/Mdy

or, equivalently




The only best response of a bidder of type 0, given that the outcome of the auction is

efficient, is to bid zero, so that B(0) = 0. The SOC is fulfilled, as

. au(t,s)\ oU(t,s) 0U(s,s)
o (2) o (e

) = sign(v(t,s) — v(s,s)) = sign(t — s).

An immediate consequence of the fact that v(y,y) > 0 for all y > 0 (by Value Monotonic-
ity) is that the bid function B(t) is strictly increasing in ¢, which is the assumption we

started with.

PrROOF OF PROPOSITION 3. The equilibrium bid function of the lowest-price all-pay
auction given in Proposition 1 results in an efficient allocation while the expected utility
of the lowest type is zero. By Proposition 2, this is still an equilibrium when the auction
is followed by a resale market, so that the expected utility of the lowest type remains
zero. Then, by Lemma 2, with restrictions (4) and (5), the lowest-price all-pay auction is

optimal. H

PROOF OF PROPOSITION 4. Assume that a threshold type { exists such that in
equilibrium, all types ¢ < t abstain from bidding, and all types t > t bid according to
h. Tt is straightforwardly verified that h(-,t) satisfies (14) with the boundary condition

h(t,tA) — R. In equilibrium, ¢ must be indifferent between not bidding and bidding R.

Hence

oRN(R) = —R + pRN(R) + / o(f,y)dFY (y), (15)

where N(R) = (n — 1)(1 —t) is the expected number of the other bidders who submit a
bid above R. (15) is equivalent to (6). Since v is strictly increasing in its first argument
(by Value Monotonicity), (6) has a unique solution for ¢. It is then standard to check

that no type has an incentive to deviate from the equilibrium.

PROOF OF PROPOSITION 5. According to the equilibrium defined in Proposition 4,

all types above t submit a bid according to a strictly increasing bid function. All types
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below ¢ abstain from bidding. Let p* be the allocation rule of the feasible direct revelation
mechanism related to the lowest-price all-pay auction with the specified reserve price and
the given equilibrium. Then, by MR Monotonicity, p* maximizes Et{z MR;(t)p:(t)}
over all feasible direct revelation mechanisms (p,z). Moreover, by deﬁmtlon of @, the

expected utility of bidder i’s lowest type equals zero over both stages of I', as

ut+pdy - =0
J#i
The given strategies constitute a Bayesian Nash equilibrium, and when these are played,

I' maximizes (3). Therefore, I' is optimal. H

20



8 Literature

Ausubel LM, Cramton P (1999) The optimality of being efficient. Mimeo, University
of Maryland

Borgers T, Dustmann C (2005) Strange bids: Bidding behaviour in the United King-
dom’s third generation spectrum auction. Economic Journal 115: 551-578

Bulow JI, Huang M, Klemperer PD (1999) Toeholds and takeovers. Journal of Political
Economy 107: 427-454

Bulow JI, Klemperer PD (1996) Auctions vs. negotiations. American Economic Re-
view 86: 180-194

Bulow JI, Roberts J (1989) The simple economics of optimal auctions. Journal of
Political Economy 97: 1060-1090

Coase RH (1960) The problem of social cost. Journal of Law and Economics 3: 1-44

Coase RH (1972) Durability and monopoly. Journal of Law and Economics 15: 143-
149

Cremer J, McLean RP (1985) Optimal selling strategies under uncertainty for a dis-
criminatory monopolist when demands are interdependent. Econometrica 53: 345-361

Cremer J, McLean RP (1988) Full extraction of the surplus in Bayesian and dominant
strategy auctions. Econometrica 56: 1247-1257

Engelbrecht-Wiggans R (1988) Revenue equivalence in multi-object auctions. Eco-
nomics Letters 26: 15-19

Engelbrecht-Wiggans R (1994) Auctions with price-proportional benefits to bidders.
Games and Economic Behavior 6: 339-346

Goeree JK, Maasland E, Onderstal S, Turner JL (2005) How (not) to raise money.
Journal of Political Economy 113: 897-918

Haile PA (1999) Auctions with resale. Mimeo, University of Wisconsin-Madison

Jehiel P, Moldovanu B, Stacchetti E (1996) How (not) to sell nuclear weapons. Amer-

ican Economic Review 86: 814-829

21



Lu J (2005) When and how to dismantle nuclear weapons: More on optimal auctions
with externalities. Mimeo, National University of Singapore

Maasland E, Onderstal S (2002) Auctions with financial externalities. CentER Dis-
cussion Paper 2002-22, Tilburg University

Maasland E, Onderstal S (2005) Auctions with financial externalities. Economic The-
ory, forthcoming

Maskin ES, Riley JG (1989) Optimal multi-unit auctions. In: Hahn F (ed.) The
economics of missing markets, information, and games. Oxford University Press, Oxford

McAfee RP, Reny PJ (1992) Correlated information and mechanism design. Econo-
metrica 60: 395-421

Milgrom PR, Weber RJ (1982) A theory of auctions and competitive bidding. Econo-
metrica 50: 1089-1122

Myerson RB (1981) Optimal auction design. Mathematics of Operations Research 6:
98-73

Myerson RB, Satterthwaite M (1983) Efficient mechanisms for bilateral trade. Journal
of Economic Theory 29: 265-281

Orzen H (2005) Fundraising through competition: Evidence from the lab. CeDEx
Working Paper 2005-04, University of Nottingham

Riley JG, Samuelson WF (1981) Optimal auctions. American Economic Review 71:
381-392

22



