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Chapter 1

A Swift Tour of Auction Theory

and its Applications

1.1 Introduction

In the past few decades, auction theory has become one of the most active research areas in

economic sciences. The focus on auctions is not surprising, as auctions have been widely used

over thousands of years to sell a remarkable range of commodities. One of the earliest reports

of an auction is by the old Greek historian Herodotus of Halicarnassus, who writes about men

in Babylonia around 500 B.C bidding for women to become their wives.1 Perhaps the most

astonishing auction in history took place in 193 A.D. when the Praetorian Guard put the

entire Roman Empire up for auction. Didius Julianus was the highest bidder. However, he

fell prey to what, today, is known as the winner’s curse: he was beheaded two months later

when Septimus Severus conquered Rome.2

Nowadays, the use of auctions is widespread. There are auctions for perishable goods such

as cattle, fish, and flowers; for durables including art, real estate, and wine; and for abstract

objects like treasury bills, licenses for “third generation” (3G) mobile telecommunication (or

UMTS), and electricity distribution contracts.3 In some of these auctions, the amount of

money raised is almost beyond imagination. In the 1990s, the US government collected tens of

billions of dollars from auctions for licenses for second generation mobile telecommunications,4

and in 2000, the British and German governments, together, raised almost 100 billion euros

1Some have called Herodotus the Father of History, while others have called him the Father of Lies (Pipes,

1998-1999). There may be some doubt, therefore, about whether auctions for women really took place.
2These, and other examples of remarkable auctions, can be found in Cassady (1967) and Shubik (1983).
3Empirical investigations on these auctions include Zulehner (2009) (cattle), Pezanis-Christou (2000) (fish),

van den Berg et al. (2001) (flowers), Ashenfelter and Graddy (2002) (art), Lusht (1994) (real estate), Ashenfelter

(1989) (wine), Binmore and Swierzbinski (2000) (treasury bills), van Damme (2002) (UMTS licenses), and

Littlechild (2002) (electricity distribution contracts).
4Cramton (1998).
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2 A Swift Tour of Auction Theory and its Applications

in UMTS auctions.5

The Dutch government is also becoming accustomed to auctions as allocation mechanisms.

A beauty contest was used, as recently as 1996, to assign a GSM6 license to Libertel. That year,

however, seems to have been the turning point. A proposal to change the Telecommunication

Law to allow auctions reached the Dutch parliament in 1996; the new law was implemented in

1997.7 In 1998, GSM licenses were sold through an auction,8 in 2000, the UMTS auction took

place (although this auction was not as successful as the English and German UMTS auctions

in terms of money raised),9 and in 2010, frequencies in the 2.6 GHz-band were auctioned.10

Moreover, since 2002, the Dutch government has auctioned licenses for petrol stations on a

yearly basis.

In this paper, we present an overview of the theoretical literature on auctions.11 Auction

theory is an important theory for two very different reasons. First, as mentioned, many

commodities are being sold at auctions. Therefore, it is important to understand how auctions

work, and which auctions perform best, for instance, in terms of generating revenues or in terms

of efficient allocation. Second, auction theory is a fundamental tool in economic theory. It

provides a price formation model, whereas the widely used Arrow-Debreu model, from general

equilibrium theory, is not explicit about how prices form.12 In addition, the insights generated

by auction theory can be useful when studying several other phenomena which have structures

that resemble auctions like: lobbying contests, queues, wars of attrition, and monopolists’

market behavior.13 For instance, the theory of monopoly pricing is mathematically the same

as the theory of revenue maximizing auctions.14 Reflecting its importance, auction theory has

become a substantial field in economic theory.

Historically, the field of auction theory roughly developed along the following lines. William

Vickrey’s 1961 paper is usually recognized as the seminal work in auction theory. Vickrey

studies auctions of a single indivisible object. In the symmetric independent private values

(SIPV) model, Vickrey derives equilibrium bidding for the first-price and the second-price

auction.15 He finds that the outcome of both auctions is efficient in the sense that it is always

the bidder that attaches the highest value to the object who wins. Moreover, he comes to

the surprising conclusion that the two auctions yield the same expected revenue for the seller.

5See, e.g., Binmore and Klemperer (2002), van Damme (2002), and Maasland and Moldovanu (2004).
6Global System for Mobile communications: a second generation mobile telecommunications standard.
7Verberne (2000).
8van Damme (1999).
9van Damme (2002).
10Maasland (2010).
11This paper is a slightly revised version of Maasland and Onderstal (2006).
12Arrow and Debreu (1954).
13Klemperer (2003).
14Bulow and Roberts (1989).
15 In the SIPV model, risk neutral bidders with unlimited budgets bid competitively for an object whose value

each bidder independently draws from the same distribution function. If a bidder does not win the object, she

is indifferent about who wins, and how much the winner pays. More details about this model can be found in

the next section.
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Vickrey’s paper largely contribute to his 1996 Nobel prize in economics, which he shares with

Sir James Mirrlees.16

It takes until the end of the 1970s before Vickrey’s work is further developed. Roger

Myerson, John Riley, and William Samuelson derive results with respect to auctions that

maximize the seller’s expected revenue. They show that Vickrey’s ‘revenue equivalence result’

extends far beyond the revenue equivalence of the first-price auction and the second-price

auction. In addition, they discover that the seller can increase his revenue by inserting a

reserve price. In fact, in the SIPV model, both the first-price and the second-price auction

maximize the seller’s expected revenue if the seller implements the right reserve price.

From the early eighties onwards, the attention shifts to the effects of relaxing the assump-

tions underlying the SIPV model. Particularly, under which circumstances does the revenue

equivalence between the first-price auction and the second-price auction ceases to hold? Im-

portant contributions, in this respect, are the affiliated signals17 model of Paul Milgrom and

Robert Weber, and the risk aversion model of Eric Maskin and John Riley. Under affiliated

signals, the second-price auction turns out to dominate the first-price auction in terms of

expected revenue, while with risk aversion, the opposite result holds true.

In the mid-eighties, Jean-Jacques Laffont, Jean Tirole, Preston McAfee, and John McMil-

lan further develop auction theory by focusing on the auctioning of incentive contracts. In

contrast to Vickrey’s framework, the principal does not wish to establish a high revenue or an

efficient allocation of an object, but aims at inducing effort from the winner after the auction.

An example is the procurement for the construction of a road. The procurer hopes that the

winner of the procurement will build the road at the lowest possible cost. The question that

arises is then: What is the optimal procurement mechanism? One of the main results is that

it is not sufficient to simply sell the project to the lowest bidder and make her the residual

claimant of the social welfare that she generates. This is because the winner would put too

much effort in the project relative to the optimal mechanism.18

The most recent burst of auction theory follows in the mid-nineties and the first years of

the new millennium, as a response to the FCC19 auctions in the US, and the UMTS auctions

in Europe. The main focus shifts from single-object auctions to auctions in which the seller

offers several objects simultaneously. Rather simple efficient auctions can be constructed if

all objects are the same, or if each bidder only demands a single object. In the general case,

where multi-object demand and heterogeneous objects are concerned, the Vickrey-Clarke-

Groves mechanism is efficient. Unfortunately, however, the mechanism has many practical

16We will see that the techniques developed by Mirrlees to construct optimal taxation schemes (and other

incentive schemes), turned out to be useful for auction theory as well.
17Affiliation roughly means that the signals of the bidders are strongly correlated.
18The methods used to derive the results are essentially all those of Mirrlees who developed them within the

framework of optimal taxation. We thank an anomymous referee for pointing this out to us.
19FCC stands for Federal Communications Commission, the agency that organized the auctions for licenses

for second generation mobile telecommunications.
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drawbacks. Larry Ausubel, Peter Cramton, and Paul Milgrom have recently proposed the

‘clock-proxy auction’ to deal with these. However, more research is needed to determine the

circumstances under which this auction generates desirable outcomes.

The aim of this paper is to give an easily accessible overview of the most important insights

of auction theory. The paper adds the following to earlier surveys like Klemperer (1999) and

Krishna (2002).20 First, when discussing the results for single-object auctions, we try to find

a compromise between the mainly non-technical treatment of Klemperer and the advanced

treatment of Krishna by giving easily accessible proofs to the most elementary propositions.

Second, we elaborate more on what happens if the assumptions of the SIPV model are relaxed.

Third, we cover auctions of incentive contracts, which have been almost entirely ignored in

earlier surveys, although the problem of auctioning incentive contracts is interesting from

both a theoretical and practical point of view. Fourth, our treatment of multi-object auctions

captures the progress of auction theory since Klemperer’s and Krishna’s work was published.

The fact that most of the cited articles are recently dated shows that the previous surveys are

a little outdated with respect to multi-object auctions.

The setup of this paper follows the historical development of auction theory as above.

We study single-object auctions in Section 1.2. We start this section by studying equilibrium

bidding in the SIPV model for standard auctions such as the English auction, and auctions

that are important for modelling other economic phenomena such as the all-pay auction. Then

we discuss the revenue equivalence theorem, and construct auctions that maximize the seller’s

expected revenue. We conclude this section by relaxing the assumptions of the SIPV model and

discussing what happens to the revenue ranking of standard auctions. In Section 1.3, we solve

the problem of auctioning incentive contracts. Section 1.4 moves our attention to multi-object

auctions. Finally, Section 1.5 concludes with a short summary and outlines the remainder of

the thesis. The proofs of all propositions and lemmas are relegated to the appendix.

1.2 Single-Object Auctions

In this section, we study auctions of a single object. In Section 1.2.1, we introduce the

symmetric independent private values (SIPV) model. In Section 1.2.2, we analyze equilibrium

bidding for several auction types. Section 1.2.3 contains a treatment of the revenue equivalence

theorem and optimal auctions. In Section 1.2.4, we relax the assumptions of the SIPV model,

and discuss the effects on the revenue ranking of standard auctions. Section 1.2.5 contains a

summary of the main findings.

20An overview of field studies on auctions can be found in Laffont (1997). Kagel (1995) presents a survey of

laboratory experiments on auctions, while the books by Klemperer (2004) and Milgrom (2004) discuss the use

of auction theory in the design of real-life auctions.
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1.2.1 The SIPV Model

The SIPV model was introduced by Vickrey (1961). He models an auction game as a non-

cooperative game with incomplete information. The SIPV model applies to any auction in

which a seller offers one indivisible object to  ≥ 2 bidders, and is built around the following
set of assumptions.21

(A1) Risk neutrality : All bidders are risk neutral.

(A2) Private values: Bidder ,  = 1  , has value  for the object. This number is private

information to bidder , and not known to the other bidders and the seller.

(A3) Value independence: The values  are independently drawn.

(A4) No collusion among bidders: Bidders do not make agreements among themselves in

order to achieve the object cheaply. More generally, bidders play according to a Bayesian

Nash equilibrium, i.e., each bidder employs a bidding strategy that tells her what to bid

contingent on her value, and given the conditional bids of the other bidders, she has no

incentive to deviate from this strategy.

(A5) Symmetry: The values  are drawn from the same smooth distribution function  on

the interval [0 ̄] with density function  ≡  0.

(A6) No budget constraints: Each bidder is able to fulfill the financial requirements that are

induced by her bid.

(A7) No allocative externalities: Losers do not receive positive or negative externalities when

the object is transferred to the winner of the auction.

(A8) No financial externalities: The utility of losing bidders is not affected by how much the

winner pays.

1.2.2 Equilibrium Bidding in the SIPV Model

In this section we analyze equilibrium bidding in commonly studied auctions under the as-

sumptions of the SIPV model. We start with the four ‘standard’ auctions that are used to

allocate a single object: the first-price sealed-bid auction, the Dutch auction, the Vickrey

auction, and the English auction. In addition, we examine two other auctions that are rarely

used as allocation mechanisms, but that are useful in modeling other economic phenomena:

the all-pay auction and the war of attrition. We focus on three types of questions. First,

how much do bidders bid in equilibrium? Second, is the equilibrium outcome efficient?22 And

third, which of these auctions yields the highest expected revenue?

21For a more detailed discussion on this model, see for instance McAfee and McMillan (1987a).
22By efficiency we mean that the auction outcome is always such that the bidder who wins the object is the

one who attaches the highest value to it.
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First-Price Sealed-Bid Auction

In the first-price sealed-bid auction (sealed high-bid auction), bidders independently submit

sealed bids. The object is sold to the highest bidder at her own bid.23 In the US, mineral rights

are sold using this auction. In the appendix, we consider two methods for deriving symmetric

equilibrium bidding strategies, the ‘direct’ and the ‘indirect’ method. These methods turn out

to be useful for determining equilibrium bidding, not only for the first-price sealed-bid auction,

but for other auctions as well. The seller’s expected revenue  is the expectation of the

bid of the highest bidder, which is equal to { 
2 }, where  

2 is the second-order statistic of

 draws from  . In other words, the expected revenue from the first-price sealed-bid auction

is the expectation of the second highest value.

Proposition 1.1 The n-tuple of strategies (  ), where

() =  −

R
0

 ()−1

 ()−1


constitutes a Bayesian-Nash equilibrium of the first-price sealed-bid auction.24 The equilibrium

outcome is efficient. In equilibrium, the expected revenue is equal to

 = { 
2 }

Observe that all bidders bid less than their value for the object, i.e., they shade their bids

with an amount equal to
R
0

 ()−1

 ()−1


This amount decreases when the number of bidders increases. In other words, more competi-

tion decreases a bidder’s profit given that she wins.25

Dutch Auction

In the Dutch auction (descending-bid auction), the auctioneer begins with a very high price,

and successively lowers it, until one bidder bids, i.e., announces that she is willing to accept

the current price. This bidder wins the object at that price, unless the price is below the

reserve price. Flowers are sold this way in the Netherlands. The Dutch auction is strategically

23Sometimes, a reserve price is used, below which the object will not be sold. Throughout the paper, when

we do not explicitly specify a reserve price, we assume it to be zero.
24Milgrom and Weber (1982) show that this equilibrium is the unique symmetric equilibrium. Maskin and

Riley (2003) show that there can be no asymmetric equilibrium under the assumptions of the SIPV model.
25This result does not hold generally, though. In models with common values, increased competition may

lead to lower bids. See, e.g., Goeree and Offerman (2003).
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equivalent to the first-price sealed-bid auction because an -tuple of bids (1  ) in both

auctions yields the same outcome, i.e., the same bidder wins and she has to pay the same

price.26 27 This implies that the Bayesian-Nash equilibria of these two auctions must coincide,

and that both are equally efficient and yield the same expected revenue.

Proposition 1.2 The n-tuple of strategies (  ), where

() =  −

R
0

 ()−1

 ()−1


constitutes a Bayesian-Nash equilibrium of the Dutch auction. The equilibrium outcome is

efficient. In equilibrium, the expected revenue is equal to

 = { 
2 }

Vickrey Auction

In the Vickrey auction (second-price sealed-bid auction), bidders independently submit sealed

bids. The object is sold to the highest bidder (given that her bid exceeds the reserve price).

However, in contrast to the first-price sealed-bid auction, the price the winner pays is not her

own bid, but the second highest bid (or the reserve price if it is higher than the second highest

bid).

The Vickrey auction has an equilibrium in weakly dominant strategies28 in which each

bidder bids her value. To see this, imagine that bidder  wishes to bid   . Let ̄ be the

highest bid of the other bidders. Bidding  instead of  only results in a different outcome if

  ̄  . If ̄  , bidder  does not win in either case. If ̄  , bidder  wins and pays ̄

in both cases. However, in the case that   ̄  , bidder  receives zero utility by bidding

, while she obtains  − ̄  0 when bidding . Bidding    only results in a different

outcome if   ̄  . A bid of  results in zero utility, whereas bidding  yields her a utility

of  − ̄  0. Therefore, bidder  is always (weakly) better off by submitting a bid equal to

her value. As all bidders bid their value and the winner pays the second highest value, the

revenue from the Vickrey auction can be straightforwardly expressed as

  = { 
2 }.

26Strictly speaking, in the Dutch auction, only one bidder submits a bid, namely the winner. However, each

bidder has a price in her mind at which she wishes to announce that she is willing to buy the object. We

consider this price as her bid.
27The strategic equivalence between the Dutch auction and the first-price sealed-bid auction is generally

valid, i.e., not restricted to the SIPV model.
28For a definition of this equilibrium concept, see, e.g., Krishna (2002), p. 280.
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Proposition 1.3 The n-tuple of strategies (    ), where

 () = 

constitutes a Bayesian-Nash equilibrium of the Vickrey auction. The equilibrium is in weakly

dominant strategies and the equilibrium outcome is efficient. In equilibrium, the expected

revenue is equal to

  = { 
2 }

Despite its useful theoretical properties, the Vickrey auction is seldom used in practice.29

There may be several reasons why this is the case. First, bidding in the auction is not as

straightforward as the theory suggests. At least in laboratory experiments, a substantial

number of subjects deviates from the weakly dominant strategy, in contrast to the English

auction.30 Second, the Vickrey auction may cause political inconveniences. For instance, in

a spectrum auction in New Zealand, the winner, who submitted a bid of NZ$ 7 million, paid

only NZ$ 5,000, the bid of the runner-up.31 Third, a reason why the auction may not be as

efficient as the theory predicts is that bidders are reluctant to reveal their true value for the

object, as the seller may use this information in later interactions. In the English auction, as

we will see next, the highest bidder does not have to reveal how much she values the object,

as the auction stops after the runner-up has left the auction.

Still, the Vickrey auction is closely related to the so-called proxy auction, which is fre-

quently used in reality. For instance, Internet auction sites such as eBay.com, Amazon.com

and ricardo.nl, use this auction format, and in the Netherlands, special telephone numbers,

such as 0900-flowers, are also allocated via this auction.32 In a proxy auction, a bidder in-

dicates until which amount of money the auctioneer (commonly a computer) is allowed to

increase her bid (in case she is outbid by another bidder). The proxy auction is strategically

equivalent to the Vickrey auction if bidders are only allowed to submit a single bid, and no

information about the bids of the other bidders is revealed.

English Auction

In the English auction (also known as English open outcry, oral, open, or ascending-bid auc-

tion), the price starts at the reserve price, and is raised successively until one bidder remains.

This bidder wins the object at the final price. The price can be raised by the auctioneer, or by

having bidders call the bids themselves. We study here a version of the English auction called

the Japanese auction, in which the price is raised continuously, and bidders announce to quit

the auction at a certain price (e.g., by pressing or releasing a button). The English auction

29Rothkopf et al. (1990).
30Kagel et al. (1987), Kagel and Levin (1993), Harstad (2000), and Englmaier et al. (2009).
31McMillan (1994).
32Staatscourant (2004).
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is the most famous and most commonly used auction type. Art and wine are sold using this

type of auction.

In the SIPV model, the English auction is equivalent to the Vickrey auction in the following

sense. In both auctions, bidders have a weakly dominant strategy to bid their own valuation.33

In the English auction, no bidder has a reason to step out at a price that is below or above her

value. Therefore, the equilibrium outcome in terms of revenue and efficiency is the same for

both auctions. However, unlike the first-price sealed-bid auction and the Dutch auction, these

two auctions are not strategically equivalent. In the English auction bidders can respond

to rivals leaving the auction, which is not possible in the Vickrey auction. Therefore, the

equilibrium outcomes are the same as long as the bidders’ valuations are not affected by

observing rivals’ bidding behavior.

Proposition 1.4 The n-tuple of strategies (  ), where

() = 

constitutes a Bayesian-Nash equilibrium of the English auction. The equilibrium is in weakly

dominant strategies and the equilibrium outcome is efficient. In equilibrium, the expected

revenue is equal to

 = { 
2 }

Of course, the English auction has several equilibria. For example, the strategy combina-

tion where bidder 1 bids very aggressively and bidders 2 to  hold back, is also an equilibrium.

However, the equilibrium in Proposition 1.4 is the only one that is not weakly dominated.

All-Pay Auction

Now we turn to the all-pay auction and the war of attrition, mechanisms that are rarely used

to allocate objects, but turn out to be useful in modeling other economic phenomena. The

all-pay auction has the same rules as the first-price sealed-bid auction, with the difference

that all bidders must pay their bid, even those who do not win the object. Although the

all-pay auction is rarely used as a selling mechanism, there are at least three reasons why

economists are interested in it. First, all-pay auctions are used to model several interesting

economic phenomena, such as political lobbying, political campaigns, research tournaments,

and sport tournaments.34 Efforts of the agents in these models are viewed as their bids.

Second, this auction has useful theoretical properties, as it maximizes the expected revenue

for the auctioneer if bidders are risk averse or budget constrained.35 Third, all-pay auctions

are far better able to raise money for a public good than winner-pay auctions (such as the four

33See, e.g., Milgrom and Weber (1982).
34See, e.g., Che and Gale (1998a) and Moldovanu and Sela (2001).
35See Matthews (1983) and Laffont and Robert (1996), respectively.
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auctions described above).36 The reason is that in winner-pay auctions, in contrast to all-pay

auctions, bidders forgo a positive externality if they top another’s high bid. The optimal

fund-raising mechanism is an all-pay auction augmented with an entry fee and reserve price.

Most of the early literature on the all-pay auction and its applications focuses on the

complete information setting.37 This is somewhat surprising, as it seems to be more natural

to assume incomplete information, i.e., the ‘bidders’ (e.g. interest groups) do not know each

other’s value for the ‘object’ (e.g. obtaining a favorable decision by a policy maker). In

addition, in some situations, there is not less than a continuum of equilibria for the all-pay

auction with complete information.38 In contrast, there is a unique symmetric equilibrium for

the all-pay auction with incompletely informed bidders, at least in the SIPV model.39 The

following proposition gives the equilibrium properties of the all-pay auction in the SIPV model.

Proposition 1.5 The n-tuple of strategies (−  −), where

−() = (− 1)
Z
0

 ()−2 ()

constitutes a Bayesian-Nash equilibrium of the all-pay auction. The equilibrium outcome is

efficient. In equilibrium, the expected revenue is equal to

− = { 
2 }

Note that, in contrast to the earlier models of the all-pay auction with complete informa-

tion, there is no ‘full rent dissipation’: the total payments are below the value of the object

to the winner. This finding suggests that Posner (1975) overestimates the welfare losses of

rent-seeking when he assumes that firms’ rent-seeking costs to obtain a monopoly position are

equal to the monopoly profits.

War of Attrition

The war of attrition game was defined by biologist Maynard Smith (1974) in the context of

animal conflicts.40 For economists, this game has turned out to be useful to model certain

(economic) interactions between humans. An example is a battle between firms to control

new technologies, for instance in mobile telecom the battle between the CDMA (code division

multiple access), the TDMA (time division multiple access), and the GSM techniques to

become the single surviving standard worldwide.41

36See Goeree et al. (2005) [Chapter 3 of this thesis].
37See, e.g., Tullock (1967, 1980), and Baye et al. (1993).
38Baye et al. (1996).
39Moldovanu and Sela (2001).
40Maynard Smith speaks about ‘contests’ and ‘displays’ instead of ‘wars of attrition’.
41Bulow and Klemperer (1999).
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Although at first sight, the war of attrition is not an auction, its rules could be used in

the auction of a single object. In such an auction, the price is raised successively until one

bidder remains. This bidder wins the object at the final price. Bidders who do not win the

object pay the price at which they leave the auction. Observe that there are two differences

between the war of attrition and the all-pay auction. First, the all-pay auction is a sealed-bid

auction, whereas the war of attrition is an ascending auction. Second, in the war of attrition,

the highest bidder only pays an amount equal to the second highest bid, and in the all-pay

auction, the highest bidder pays her own bid.

For   2, it is not straightforward to construct a symmetric Bayesian Nash equilibrium

of the war of attrition. Bulow and Klemperer (1999) show that in any efficient equilibrium all

but the bidders with the highest two values should step out immediately. The remaining two

bidders then submit bids according to a strictly increasing bid function. Strictly speaking,

this cannot be an equilibrium, as there is no information available about whom of the bidders

should step out immediately. Therefore, we restrict ourselves to the two-player case in the

following proposition.

Proposition 1.6 Let  = 2. The strategies ( ), where

() =

Z
0

()

1−  ()


constitutes a Bayesian-Nash equilibrium of the war-of-attrition. The equilibrium outcome is

efficient. In equilibrium, the expected revenue is equal to

 = { 
2 }

Nalebuff and Riley (1985) show that there is a continuum of asymmetric equilibria where

one bidder bids “aggressively” and the other “passively”. The greater the degree of aggression,

the larger is the equilibrium expected gain of the aggressive bidder.

1.2.3 Revenue Equivalence and Optimal Auctions

Observe that in the SIPV model, all of the above auctions yield the same expected revenue

if the bidders bid according to the symmetric Bayesian Nash equilibrium. Is this result more

general? Are there auctions that generate more revenue? And which auction yields the

highest expected revenue? In his remarkable paper, published in 1981, Myerson answers these

questions in a model that includes the SIPV model as a special case. In order to find the

answers, Myerson derives two fundamental results, the revelation principle, and the revenue-

equivalence theorem. In this section, we will discuss Myerson’s results in the context of the
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SIPV model.42 For simplicity, we assume that the seller does not attach any value to the

object.43

A special class of auctions is the class of direct revelation games. In a direct revelation

game, each bidder is asked to announce her value, and depending on the announcements, the

object is allocated to one of the bidders, and one bidder, or several bidders, pay a certain

amount to the seller. More specifically, let ( ) denote a direct revelation game, where

(v) is the probability that bidder  wins, and (v) is the expected payments by  to the

seller when v ≡ (1  ) is announced. There are two types of constraints that must be
imposed on ( ), an individual rationality constraint and an incentive compatibility constraint.

The individual rationality constraint follows from the assumption that each bidder expects

nonnegative utility. The incentive compatibility constraint is imposed as we demand that

each bidder has an incentive to announce her value truthfully.

Lemma 1.1 (Revelation Principle) For any auction there is an incentive compatible and

individually rational direct revelation game that gives the seller the same expected equilibrium

revenue as the auction.

Lemma 1.1 implies that when solving the seller’s problem, there is no loss of generality in

only considering direct revelation games that are individually rational and incentive compati-

ble. Now, consider the following definition of bidder ’s marginal revenue:

() ≡  − 1−  ()

()
, ∀  (1.1)

We call the seller’s problem regular if  is an increasing function.

Lemma 1.2 Let ( ) be a feasible direct revelation mechanism. The seller’s expected revenue

from ( ) is given by

0( ) = v{
X
=1

()(v)}−
X
=1

(  ) (1.2)

where (  ) is the expected utility of the bidder with the lowest possible value.

Several remarkable results follow from Lemma 1.2. We start with the revenue equivalence

theorem.

Proposition 1.7 (Revenue Equivalence Theorem) The seller’s expected revenue from an

auction is completely determined by the allocation rule p related to its equivalent direct reve-

lation game ( ), and the expected utility of the bidder with the lowest possible value.

42 Independently, Riley and Samuelson (1981) derived similar results.
43Myerson (1981) assumes that the seller attaches some value to the object, which is commonly known among

all bidders.
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From this proposition, it immediately follows that in the SIPV model, all standard auctions

yield the same expected utility for the seller and the bidders, provided that all bidders play

the efficient Bayesian Nash equilibrium. Efficiency implies that the allocation rule is such that

it is always the bidder with the highest value who wins the object, so that the allocation rule

is the same for all standard auctions. In addition, in the efficient equilibrium of all standard

auctions, the expected utility of the bidder with the lowest possible value is zero.

Now, we use Lemma 1.2 to construct the revenue maximizing auction. Observe that in

(1.2), apart from a constant, the seller’s expected revenue is equal to the sum of each bidder’s

marginal revenue multiplied by her winning probability. If the sellers’ problem is regular, then

marginal revenues are increasing in , so that the following result follows.
44

Proposition 1.8 Suppose that the seller’s problem is regular, and that there is an auction

that in equilibrium, (1) assigns the object to the bidder with the highest marginal revenue,

provided that the marginal revenue is nonnegative, (2) leaves the object in the hands of the

seller if the highest marginal revenue is negative, and (3) gives the lowest types zero expected

utility. Then this auction is optimal.

This proposition has an interesting interpretation for the standard auctions:

Proposition 1.9 When the seller’s problem is regular, all standard auctions are optimal when

the seller imposes a reserve price  with () = 0.45

We only sketch the proof of this proposition. In the equilibrium of a standard auction with

reserve price, bidders with a value below the reserve price abstain from bidding, and bidders

with a value above the reserve price bid according to the same strictly increasing bid function.

If the reserve price is chosen such that the marginal revenue at the reserve price is equal to

zero, then all standard auction are optimal as (1) if the object is sold, it is always assigned

to the bidder with the highest value and hence the highest nonnegative marginal revenue, (2)

the object remains in the hands of the seller in the case that the highest marginal revenue is

negative, and (3) the expected utility of the bidder with the lowest value is zero. Note that the

reserve price does not depend on the number of bidders. In fact, it is the same as the optimal

take-it-or-leave price when the seller faces a single potential buyer. The following example

illustrates these findings in a simple setting with the uniform distribution.

Example 1.1 Suppose all bidders draw their value from the uniform distribution on the in-

terval [0 1]. Then

() = 2 − 1
44See Myerson (1981) for further discussion on the consequences of relaxing this restriction.
45Myerson (1981) does not mention this result explicitly, but it follows from his study. Riley and Samuelson

(1981) formally derive the result in an independent private values model.
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As  is strictly increasing in , the seller’s problem is regular. Moreover, () = 0

implies  = 1
2
. So, from Proposition 1.9 it follows that all standard auctions are optimal when

the seller choose reserve price  = 1
2
. Observe that the seller keeps the object with probability¡

1
2

¢
. N

1.2.4 Relaxing the SIPV Model Assumptions

In the previous section, we have observed, that in the SIPV model, all efficient auctions yield

the same revenue to the seller as long as the bidder with the lowest possible value obtains zero

expected utility. In this section, we relax the Assumptions (A1)-(A8) underlying the SIPV

model and study the effect on the revenue ranking of the most commonly studied auctions,

first-price auctions (like the first-price sealed-bid auction and the Dutch auction), and second-

price auctions (like the Vickrey auction and the English auction).46 In order to obtain a

clear view of the effect of each single assumption, we relax the assumptions one by one, while

keeping the others satisfied. Table 1.1 gives an overview.47

Assumption Alternative Model

(A1) Risk neutrality Risk aversion

(A2) Private values Almost common values

(A3) Value independence Affiliation

(A4) No collusion Collusion

(A5) Symmetric bidders Asymmetry

(A6) No budget constraints Budget constraints

(A7) No allocative externalities Allocative externalities

(A8) No financial externalities Financial externalities

Table 1.1: Models that relax assumptions (A1)-(A8).

Risk Aversion

The first assumption in the SIPV model is risk neutrality. Under risk aversion, the expected

revenue in the first-price auction is higher than in the second-price auction. A model of risk

aversion is the following. The winning bidder receives utility (−) if her value of the object
46From this section on, when writing ‘standard auctions’, we only refer to the first four auction types dealt

with in Section 1.2.2: the first-price sealed-bid auction, the Dutch auction, the Vickrey auction, and the English

auction.
47The alternative model is a model in which one particular assumption of the SIPV model (see first column)

does not hold, but in which another specific assumption applies (see second column) besides the other seven

SIPV model assumptions.
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is  and she pays , where  is a concave increasing function with (0) = 0. Note that risk

aversion may play a role as a bidder has uncertainty about the values, and hence the bids, of

the other bidders. In a second-price auction, bidding one’s value remains a dominant strategy.

In a first-price auction, a risk-averse bidder will bid higher than a risk-neutral bidder as she

prefers a smaller gain with a higher probability. By bidding higher she insures herself against

ending up with zero. This result still holds true if the value of the object is ex ante unknown

to the bidders.48

Almost Common Values

Assumption (A2) states that each bidder knows her own value for the object, which may be

different than the values of the other bidders. In almost common value auctions, the actual

value of the object being auctioned is almost the same to all bidders - but the actual value

is not known to anyone. For instance, in the case of two bidders, bidder 1 attaches value

1 = 1 + 2 to the object, and bidder 2 has value 2 = 1 + 2 + , where  is bidder ’s

signal, and  is strictly positive but small. In the equilibrium of the second-price auction,

bidder 1 bids 0 and bidder 2 a strictly positive amount, so that the revenue to the seller will

be zero. The intuition is as follows. Suppose that bidder 1 intends to continue bidding until

. If the high-valuation bidder goes beyond , the low-valuation bidder’s profit is zero. If the

high-valuation bidder stops bidding before , she obviously is of the opinion that the object

is worth less than  to her. But in that case, it is certain that it is worth less than  to the

low-valuation bidder. For each positive  for the low-valuation bidder, there is an expected

loss. Therefore, bidder 1 bids zero in equilibrium. In the first-price auction, in contrast, the

auction proceeds are strictly positive. Bidder 1 bids more than zero as she knows that she has

a chance of winning as bidder 2 does not know exactly how much she should shade her bid in

order to still win the auction.49

Affiliation

The third assumption is value independence, i.e., the values are independently drawn. If these

values are ‘affiliated’, the second-price auction yields more expected revenue than the first-

price auction. Affiliation roughly means that there is a strong positive correlation between

the signals of the bidders. In other words, if one bidder receives a high signal about the value

of the good, she expects the other to receive a high signal as well. Let us consider a situation

with pure common values, i.e., all bidders have the same value for the object, for instance

the right to drill oil in a certain area. As the actual value of the oil field is not known to

the bidders before the auction, they run the risk of bidding too high, and fall prey to what

48Maskin and Riley (1984).
49Klemperer (1998).
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is called the winner’s curse:50 for a bidder, winning is bad news as she is the one who has

the most optimistic estimate for the true value of the object. Taking the winner’s curse into

account, a bidder is inclined to shade her bid substantially. However, if bidders can base their

final bid on other bidders’ information, then they feel more confident about bidding - and

will hence bid less conservatively. An auction generates more revenue if the payment of the

winning bidder has greater linkage to the value estimates of other bidders. In a first-price

sealed-bid auction, there is no such linkage (the winner pays her own bid). A second-price

auction has more linkage since the winner pays the second highest bid - which is linked to the

value estimate of the second highest bidder.51

Collusion

According to Assumption (A4), bidders do not collude, i.e., they play according to a Bayesian

Nash equilibrium. Collusive agreements are easier to sustain in a second-price auction than

in a first-price auction, so that the expected revenue is higher in the latter. Assuming no

problems in coming to agreement among all the bidders, or in sharing the rewards between

them, and abstracting from any concerns about detection, etc., the optimal agreement in a

second-price auction is for the bidder with the highest value to bid her true value and for

all other bidders to abstain from bidding. This agreement is stable as the bidders with the

lower values cannot improve their situation by bidding differently. In a first-price auction, the

optimal agreement for the highest value bidder is to bid a very small amount and for all other

bidders to abstain from bidding. This agreement is much harder to sustain as the bidders with

the lower values have a substantial incentive to cheat on the agreement by bidding just a little

bit higher than the bid of the highest value bidder.52

Asymmetry

The fifth assumption is symmetry, which means that the values are drawn from the same

distribution function. Asymmetry in bidders’ value distributions has an ambiguous effect

on the revenue ranking of the first-price and second-price auctions. In some situations, the

expected revenue from a first-price auction is higher. Imagine, for instance, that the strong

bidder’s distribution is such that, with high probability, her valuation is a great deal higher

than that of a weak bidder. In a first-price auction the strong bidder has an incentive to

outbid the weak bidder (to enter a bid slightly higher than the maximum valuation in the

weak bidder’s support) in order to be sure that she will win. In a second-price auction the

expected payment will only be the expected value of the weak bidder’s valuation, as for both

bidders it is a weakly dominant strategy to bid their own value. In other situations, however,

50Capen et al. (1971) claim that oil companies indeed fall prey to the winner’s curse in early Outer Continental

Shelf oil lease auctions.
51Milgrom and Weber (1982).
52Robinson (1985).
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the expected revenue from the first-price auction may be lower. Suppose, for instance, that

across bidders, distributions have different shapes but approximately the same support. A

strong bidder, with most mass in the upper range of the distribution, has not much reason to

bid high in the first-price auction as she has a substantial probability to beat the weak bidder

by submitting a low bid. This incentive to ‘low ball’ is absent in a second-price auction, so

that the expected revenue from the latter may be higher.53

Budget Constraints

Under Assumption (A6), bidders face no budget constraints. If this assumption is violated,

the first-price auction yields more revenue than the second-price auction. This is trivially true

when all bidders face a budget constraint ̄ such that (̄)  ̄  ̄. Clearly, the expected

revenue of the first-price auction is not affected, as no bidder wishes to submit a bid above

̄ in equilibrium. In contrast, in the second-price auction, bidders with a value in the range

[̄ ̄] cannot bid higher than ̄, so that the expected revenue from the second-price auction

decreases relative to the situation that there are no budget constraints. This finding turns out

to hold more generally.54

Allocative Externalities

According to Assumption (A7), losers face no allocative externalities when the object is trans-

ferred to the winner. If allocative externalities are present, the second-price auction and the

first-price auction are only revenue equivalent under specific circumstances. Allocative exter-

nalities arise when losing bidders receive positive or negative utility when the auctioned object

is allocated to the winner. As an example, think about a monopolist suffering a negative exter-

nality when a competitor wins a license to operate in ‘his’ market.55 Jehiel et al. (1999) show

that the Vickrey auction (weakly) dominates other sealed-bid formats, such as the first-price

sealed-bid auction. Das Varma (2002) derives circumstances under which first-price auctions

and second-price auctions are revenue equivalent, namely when externalities are ‘reciprocal’,

i.e., for each pair of bidders, the externality imposed on each other is the same. However,

when externalities are nonreciprocal, the revenue ranking becomes ambiguous.

The following example shows why this is the case. Imagine that two bidders bid for a single

object in an auction. We assume that all conditions of the SIPV model hold, except that the

utility of bidder  when bidder  wins at a price of  is given by

( ) =

⎧⎪⎨⎪⎩  −  if  = 

− if  6= 

53Maskin and Riley (2000).
54Che and Gale (1998b).
55Gilbert and Newbery (1982).
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  ∈ {1 2}, where  is the negative externality imposed on bidder  when the other bidder
wins. Assume also that  is private information to bidder . Note that in equilibrium, each

bidder submits a bid as if her value for the object were +. Now, if  is drawn from different

distribution functions, this model is isomorphic to a model with asymmetry in bidders’ value

distributions. Recall from above that in such a model, the revenue ranking between the two

auctions is ambiguous.

Financial Externalities

Finally, we relax the assumption that the bidders face no financial externalities. The seller

generates more revenue in the second-price auction than in the first-price auction in situations

with financial externalities. A losing bidder enjoys financial externalities when she obtains a

positive externality from the fact that the winning bidder has to pay some money from winning

the object. In soccer, the Spanish team FC Barcelona may obtain positive utility when the

Italian club AC Milan spends a lot of money when buying a new striker. Assuming that AC

Milan faces a budget constraint, AC Milan becomes a weaker competitor to FC Barcelona in

future battles for other soccer players.

Formally, financial externalities can be described as follows. The utility of bidder  when

bidder  wins at a price of  is given by

( ) =

⎧⎪⎨⎪⎩  −  if  = 

 if  6= ,

where   0 is the parameter indicating the financial externality. In this model, given that the

other assumptions of the SIPV model hold, the expected revenue from a second-price auction

is higher than from a first-price auction for reasonable values of . The intuition is that, in

contrast to the first-price auction, a bidder in a second-price auction can directly influence the

level of payments made by the winner by increasing her bid.56

1.2.5 Summary

In the SIPV model, a remarkable result arises with respect to the seller’s expected revenue: it

is the same for the four standard auctions! Vickrey (1961) was the first to show this result for

the simple case of a uniform value distribution function on the interval [0 1]. Also the all-pay

auction and the two-player war of attrition turn out to yield the same revenue to the seller.57

Observe that the seller does not always realize all gains from trade, although he has some

56Maasland and Onderstal (2007) [Chapter 2 of this thesis] and Goeree et al. (2005) [Chapter 3 of this

thesis].
57 In the next section, we will give an alternative proof of this ‘revenue equivalence result’, and argue that it

holds more generally.
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market power as he can determine the rules of the auction. In expectation, he obtains the

expected value of the second highest value, whereas under complete information, his revenue

could be equal to the highest value. The seller can exploit his market power a bit more by

inserting a reserve price in any standard auction, which is indeed a way to implement an

optimal auction.

Table 1.2 summarizes how the ranking of the standard auctions changes when one of the

Assumptions (A1)-(A8) is relaxed while the other assumptions remain valid. In this table, we

compare first-price auctions (F), like the first-price sealed-bid auction and the Dutch auction,

and second-price auctions (S), like the Vickrey auction and the English auction. S ≺ F [S Â
F] means that a second-price auction yields strictly lower [strictly higher] expected revenue

than a first-price auction. S ? F implies that the revenue ranking is ambiguous, that is, in

some circumstances S ≺ F holds, and in other S Â F.

Assumption Alternative Model Ranking

(A1) Risk neutrality Risk aversion S ≺ F
(A2) Private values Almost common values S ≺ F
(A3) Value independence Affiliation S Â F
(A4) No collusion Collusion S ≺ F
(A5) Symmetric bidders Asymmetry S ? F

(A6) No budget constraints Budget constraints S ≺ F
(A7) No allocative externalities Allocative externalities S ? F

(A8) No financial externalities Financial externalities S Â F

Table 1.2: Revenue ranking of standard auctions when the Assumptions (A1)-(A8) are relaxed.

1.3 Auctioning Incentive Contracts

In this section, we turn to the problem of auctioning incentive contracts. In a large range of

countries, governments use procurements to select a firm to establish a certain project, e.g.,

constructing a road. These procurements give flesh and blood to Demsetz’ (1968) idea of

competition ‘for’ the market. McAfee and McMillan (1986, 1987b) and Laffont and Tirole

(1987, 1993) study these types of situations, thus building a bridge between auction theory

and incentive theory. Auction theory applies as the buyer wishes to select a bidder out of

a set of several bidders, and incentive theory is relevant as the buyer may wish to stimulate

the winning bidder to put effort in the project. The question that arises is then: what is

the optimal procurement mechanism? Is it optimal, in the example of road construction, to
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simply select the cheapest bidder and make her the residual claimant of all cost savings, or

are there more advanced mechanisms that increase the buyer’s utility? McAfee and McMillan

and Laffont and Tirole have answered these questions using the techniques that were first

developed by Mirrlees (1971, 1976, 1999 (first draft 1975)).

The problem of auctioning incentive contracts is not only of theoretical interest. For

instance, in several countries, the government procures welfare-to-work programs as a part of

their active labor market policy.58 In these procurements, the government allocates welfare-to-

work projects to employment service providers. A welfare-to-work project typically consists

of a number of unemployed people, and the winning provider is rewarded on the basis of

the number of these people that find a job within a specified period of time. According to

OECD (2001) procurements for welfare-to-work projects should be organized as follows. The

government defines an incentive contract that guarantees an employment service provider a

fixed reward for each person that finds a job. This reward is equal to the increase in social

welfare if this person does find a job. The government sells the contract to the highest bidder

in an auction, who has to pay her bid. Onderstal (2009) shows that the mechanism proposed

by OECD indeed performs almost as well as the optimal mechanism.

In the next section, we present a simple model. In Section 1.3.2, we construct the optimal

mechanism, and in Section 1.3.3, we summarize the main findings.

1.3.1 The Model

Let us describe a simple setting, in which a risk neutral buyer wishes to procure a project.

We assume that  risk neutral firms participate in the procurement. Each firm ,  = 1  ,

when winning the project, is able to exert observable effort  at the cost

( ) =
1

2
2 +  − 

In the road construction example, the effort level  may be interpreted as a decrease in the

cost to build the road, while in procurements of welfare-to-work programs, effort is related

to the number of people that find a job. We choose this specific cost function so that by

construction, in the first-best optimum, i.e., the optimum under complete information, the

winning firm’s effort is equal to . In addition, note that 
00
 () = 1  0. In other words, the

marginal costs of effort is strictly increasing in effort. In road construction, this seems to make

sense: the first euro in cost savings is easier to obtain than the second euro, and so forth. We

assume that diseconomies of scale do not play a role, as otherwise the government would have

a good reason to split up the project in smaller projects, and have several firms do the job.

The firms differ with respect to their efficiency level  ∈ [0 1], which is only observable
to firm . Note that the costs per unit of effort are increasing in effort. The firms draw the

58Zwinkels et al. (2004) provide a comparison of welfare-to-work procurements in Australia, Denmark, the

Netherlands, Sweden, the UK, and the US.



1.3 Auctioning Incentive Contracts 21

’s independently from the same distribution with a cumulative distribution function  on

the interval [0 1] and a differentiable density function  .  is common knowledge. We assume

that

 − 1−  ()

 ()
is strictly increasing in , (1.3)

which is the same as the regularity condition we imposed in the problem of revenue maximizing

auctions.

Firm  has the utility function

 =  − 

where  is the monetary transfer that it receives from the buyer. Let  denote the buyer’s

utility from the project. We assume that

 =  −  (1.4)

=  −  − ( )

where  is the firm the buyer has selected for the project. In the road construction example,

 can be viewed as the net cost savings for the government.59 An optimal mechanism maxi-

mizes  under the restriction that the firms play a Bayesian Nash equilibrium, and that the

mechanism satisfies a participation constraint (in equilibrium, each participating firm should

at least receive zero expected utility).

The first-best optimum has the following properties. First, the buyer selects the most

efficient firm, i.e., the firm with the highest type , as this firm has the lowest  for a given

effort level. Second, the buyer induces this firm to exert effort . Finally, the buyer exactly

covers the costs . We will see that this first-best optimum cannot be reached in our setting

with incomplete information: the buyer has to pay informational rents to the firm.

1.3.2 The Optimal Mechanism

What is the optimal mechanism, i.e., the mechanism that maximizes (1.4)? As in the problem

of finding a revenue maximizing auction, we apply the revelation principle: without loss of

generality we restrict our attention to incentive compatible and individually rational direct

revelation games. Let α̃ = (̃1  ̃) be the vector of announcements by firm 1   re-

spectively. We consider mechanisms (  )=1 that induce a truthtelling Bayesian Nash

equilibrium, where, given α̃, (α̃) is the probability that firm  wins the contract, and, given

that firm  wins the contract, (α̃) is its effort and (α̃) is the monetary transfer it receives

from the buyer.

59When the government does not select one of the bidders in the procurement, a public firm builds the road.

We assume that in that case  = 0.



22 A Swift Tour of Auction Theory and its Applications

Proposition 1.10 The optimal mechanism (∗  
∗
  

∗
 )=1 has the following properties:

∗ (α) =

⎧⎪⎨⎪⎩
1 if   max 6=  and  ≥ 

0 otherwise

∗ (α) =  − 1−  ()

 ()
 and

∗ (α) = (
∗
 (α) )+

Z


∗ () ()


where  is the unique solution to  in  =
1− ()
()

.

The optimal mechanism has the property that the buyer optimally selects the most efficient

firm, provided that its efficiency level exceeds   0. This firm exerts effort according to ∗ ,
and ∗ determines the payments it receives from the buyer. Observe that the desired effort

level ∗ (α) and  do not depend on the number of bidding firms.

Finally, let us go back to the example of the road construction project. Is it optimal to

simply auction the project to the lowest bidder and gives her a compensation equal to the cost

savings  that she realizes? The answer turns out to be ‘no’. This can be seen as follows. The

winner  of the auction maximizes her utility, which is equal to

 +  − ( ) =  − 1
2
2 +  (1.5)

where  +  is the transfer the government makes to the winner. It is routine to derive that

̂ =  maximizes (1.5). In other words, the winner puts too much effort in the project relative

to the optimal mechanism, as ̂  ∗ (α). It can be checked that the optimal mechanism can

be implemented by selling a non-linear contract to the lowest bidder. For instance, if the

efficiency levels are drawn from the uniform distribution on the interval [0 1], the government

optimally pays the winner

+
1

4
2 +

1

2


if her winning bid is  and she puts effort  in the project.

1.3.3 Summary

In this section, we have studied auctions of incentive contracts in a stylized model. Table 1.3

summarizes the main results of this model. Note that three types of inefficiency arise from

the optimal mechanism under incomplete information relative to a situation with complete

information. First, since ∗ (α)   for all   1, the firm’s effort is lower than in the full-

information optimum. Second, the buyer will not contract with any firm whose efficiency level
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is below , whereas in the full-information world, the buyer would contract with any provider.

The latter is analogous to a reserve price in an optimal auction. Third, as ∗ (α)  (
∗
 (α))

for all   0, the government covers more than the costs that are actually born by the

winning provider. These types of inefficiency give the buyer the opportunity to reduce the

informational rents that he has to pay to the winner because of incomplete information.

First-Best Mechanism Optimal Mechanism

Winner ∗∗ (α) =

⎧⎨⎩ 1 if   max 6= 

0 otherwise
∗ (α) =

⎧⎨⎩ 1 if   max {max 6=   }
0 otherwise

Effort ∗∗ (α) =  ∗ (α) =  − 1− ()
()

Payment ∗∗ (α) = (
∗∗
 (α) ) ∗ (α) = (

∗
 (α) )+

Z


∗ () ()


Table 1.3: Properties of the first-best mechanism and the optimal mechanism under incomplete

information.

1.4 Multi-Object Auctions

In the previous sections, we have observed that the seller faces a trade-off between efficiency

and revenue. When selling a single object, the seller maximizes his revenue by imposing a

reserve price. This causes inefficiency as the object remains unsold when none of the bidders

turns out to be willing to pay the reserve price, while they may assign a positive value to it.

Equivalently, in auctions of incentive contracts, the revenue maximizing buyer only assigns

the incentive contract if a sufficiently efficient firm enters the auction.

In multi-object auctions, a new trade-off enters the picture: the trade-off between efficiency

and complexity. We will see that if each bidder in the auction only demands one object, and if

the seller offers homogeneous objects, the main results from the single-object case carry over:

straightforward generalizations of the standard auctions are efficient (and revenue equivalent).

However, as soon as objects are heterogeneous, or when bidders demand more than one ob-

ject, an efficient outcome is no longer guaranteed. Luckily, rather simple efficient auctions can

be constructed with multi-object demand if objects are homogeneous and with heterogeneous

objects if there is single-object demand. In the general case, with multi-object demand and

heterogeneous objects, the Vickrey-Clarke-Groves mechanism is efficient. However, this auc-

tion has several practical drawbacks, for instance that it is complex as bids are needed on a

large range of packages. These disadvantages are only partially mitigated in innovative new

designs that have been recently proposed in the literature, such as Ausubel, Cramton, and

Milgrom’s clock-proxy auction and Goeree and Holt’s hierarchical package bidding auction.



24 A Swift Tour of Auction Theory and its Applications

From the above it is clear that the results are highly dependent on whether the objects

are identical or not and whether the bidders are allowed to win several objects or only one.

We have therefore decided to build up this section along these two crucial points. In the 2x2

matrix in Table 1.4 it is shown which part is covered in which section.

Identical Objects Non-Identical Objects

Single-Object Demand Section 1.4.1 Section 1.4.2

Multi-Object Demand Section 1.4.3 Section 1.4.4

Table 1.4: Set-up of Section 1.4.

In Section 1.4.1, we deal with auctions of multiple identical objects when bidders are

allowed to win only one object/desire at most one object. A real-life example of such an auction

is the Danish UMTS auction (by which licenses for third generation mobile telecommunication

were sold).60 Four identical licenses were put up for sale and firms were only allowed to win

one license. Section 1.4.2 introduces auctions of multiple non-identical objects when bidders

are allowed to win only one object/desire at most one object. A good example of such an

auction is the Dutch UMTS-auction (and most of the other European UMTS-auctions).61 In

the Netherlands, five non-identical licenses (differing with respect to the amount of spectrum)

were put up for sale and firms were only allowed to win one license. In Section 1.4.3, we

analyze auctions of multiple identical objects when bidders are allowed to win multiple objects.

Examples are treasury bond auctions, electricity auctions, and initial public offerings (IPOs)

of companies shares (e.g. Google’s IPO). In Section 1.4.4, we discuss auctions of multiple non-

identical objects when bidders are allowed to win multiple objects. The Dutch GSM auction

is an example of such an auction.62 Section 1.4.5 contains a conclusion with the main findings

of this section.

1.4.1 Auctions of Multiple Identical Objects with Single-Object Demand

In this section, we present the multi-unit extensions of the four standard auctions dealt with

in Section 1.2 when bidders are allowed to win only one unit/each bidder wants at most one

unit.63 These four extensions are the pay-your-bid auction, the multi-unit Dutch auction, the

uniform-price auction, and the multi-unit English auction. We assume that 2 ≤    units

are put up for sale.

60http://en.itst.dk/spectrum-equipment/Auctions-and-calls-for-tenders/3g-hovedmappe/3g-auction-2001-1.
61van Damme (2002).
62van Damme (1999).
63Early articles on multiple identical object auctions with single-object demand are Vickrey (1962) and Weber

(1983).
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Pay-Your-Bid Auction

In the pay-your-bid auction, bidders independently submit sealed bids (each bidder submits

one bid). The  units are sold to the  highest bidders at their own bid. This auction is

sometimes called a discriminatory auction as it involves price discrimination (bidders pay

different prices for an identical object), and can be seen as the generalization of the first-price

sealed-bid auction. In the SIPV model, the equilibrium outcome is efficient.

Multi-Unit Dutch Auction

In the multi-unit Dutch auction, the auctioneer begins with a very high price, and successively

lowers it, until one bidder bids. This bidder wins the first unit at that price. The price then

goes further down until a second bidder bids. This bidder wins the second unit for the price

she bid. The auction goes on until all  units are sold (or until the auction has reached a zero

price). Note that also this auction involves price discrimination. In contrast to the single-

unit case in Section 1.2, the multi-unit Dutch auction is not strategically equivalent to the

pay-your-bid auction, as bidders may update their bid when bidders leave the auction (after

winning one of the  units). In the SIPV model, the Bayesian-Nash equilibria of the multi-unit

Dutch auction and the pay-your-bid auction still coincide though, so that also the multi-unit

Dutch auction is efficient.

Uniform-Price Auction

In the uniform-price auction with single unit demand, bidders independently submit sealed-

bids (each bidder submits one bid). The  units are sold to the  highest bidders (given that

these bids exceed the reserve price). The winners pay the ( + 1)-th highest bid, i.e. the

highest rejected bid. The uniform-price auction has an efficient equilibrium, as each bidder

has a weakly dominant strategy to bid her value. The intuition is the same as in the Vickrey

auction.

Multi-Unit English Auction

In the multi-unit English auction, the price starts at the reserve price, and is successively

raised until  bidders remain. These bidders each win one unit at the final price. As in the

SIPV model, the multi-unit English auction is equivalent to the uniform-price auction, the

equilibrium outcome in terms of revenue and efficiency is the same for both auctions.

Results

When objects are identical and bidders desire at most one unit, several results from the single-

unit case generalizes to the multi-unit case. In the SIPV model, all standard auctions remain

efficient. Moreover, the revenue equivalence theorem continues to hold, which implies that the
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above four auction types yield the same revenue in expectation.64 Another result is that all

four auctions are revenue maximizing, provided that the seller imposes the optimal reserve

price. What changes with respect to the single-unit case is that the multi-unit Dutch auction

(open first-price format) is not strategically equivalent to the pay-your-bid auction (sealed-bid

first-price format) anymore.

1.4.2 Auctions of Multiple Non-Identical Objects with Single-Object De-

mand

In this section, we keep the assumption that each bidder only desires one object, but now we

assume that the seller auctions non-identical objects.

Simultaneous Ascending Auction

The best-understood auction format in this environment is the simultaneous ascending auction

(SAA).65 The rules of this auction are the following. Multiple objects are sold simultaneously

and bidding occurs in a series of rounds. In each round, those bidders who are eligible to bid,

make sealed bids for as many objects as they want. At the end of each round, the auctioneer

announces the standing high bid for each object along with the minimum bids for the next

round, which he computes by adding a pre-determined bid increment such as 5% or 10% to the

standing high bids. A standing high bid remains valid until it is overbid or withdrawn. The

auction concludes when no new bids are submitted. The standing high bids are then deemed

to be winning bids, and the winners pay an amount equal to the standing high bid.

In the simple case in which each bidder can buy at most one object, the SAA is reasonably

well understood in the SIPV context. An equilibrium is established when bidders bid ‘straight-

forwardly’, i.e., in each round, each bidder that currently does not have a standing high bid,

bids for that object which currently offers the highest surplus (the highest difference between

value and price), and they drop out once the highest available surplus becomes negative.66

This equilibrium is efficient. Indeed, this is one important reason why auction experts have

convincingly advocated the use of the SAA to sell license for mobile telecommunication, both

in the US (second generation mobile telecommunication) and Europe (UMTS).

Although the SAA has nice theoretical properties, there are some practical disadvantages.

For instance, the SAA may perform poorly with respect to revenue in uncompetitive situations,

i.e. when the number of objects available exactly equals the number of ‘advantaged’ bidders.

Weaker bidders are reluctant to participate in the auction, and those that are present bid

especially cautiously because of the enhanced winner’s curse they face. Klemperer (2002)

suggests incorporating a first-price element to bolster competition in this case. Indeed, Goeree

64See, e.g., Harris and Raviv (1981), Maskin and Riley (1989).
65See, e.g., Milgrom (2004).
66Leonard (1983) and Demange et al. (1986).
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et al. (2006) show in a laboratory experiment that the seller’s revenues are the highest among

a number of first-price formats when the licenses are sold sequentially, in decreasing order of

quality.

Another practical drawback of the SAA is related to the time it takes for the auction to

complete. For instance, in the UMTS auctions in Europe, it sometimes took several weeks

for the auction to finish. The ‘proxy auction’ is much faster. This auction format implements

straightforward bidding: a computer bids on behalf of the bidders, who indicate for each

object which amount of money they are maximally willing to pay. The computer takes this

maximal willingness to pay as a bidder’s value, and then bids straightforwardly for all bidders

until the auction ends. Suppose for simplicity that bidders have fixed valuations which are

possibly different for different licenses, but which were not affected by information held by other

companies, or by information released during the auction. Then it is a dominant strategy for

each bidder to reveal her true willingness to pay for each object, so that the outcome of the

proxy auction is efficient. When valuations are not private, a disadvantage of the proxy auction

relative to the SAA is that the bidders cannot adjust bids when during the bidding process

information is revealed which affects their estimation of the objects’ values.

1.4.3 Auctions of Multiple Identical Objects with Multi-Object Demand

In this section, we return to the situation in which all objects are identical, now assuming

that bidders are allowed to win more than one unit. We present multi-unit extensions of the

four standard auctions dealt with in Section 1.2: the pay-your-bid auction, the uniform-price

auction, the multi-unit Vickrey auction, and the Ausubel auction. We will see that several

nice properties of single-object auctions which still remain valid under single-object demand,

seize to hold under multi-object demand. Finally, we return to the SAA, and discuss some

practical drawbacks of this auction under multi-object demand.

Pay-Your-Bid Auction

As said, the pay-your-bid auction can be viewed as the multi-unit extension of the first-price

sealed-bid auction. Bidders now simultaneously submit several sealed bids. These bids should

comprise weakly decreasing inverse demand curves (), for  ∈ {1  } and  ∈ {1  }.
() represents the price offered by bidder  for the -th unit. Each bidder wins the quantity

demanded at the clearing price, and pays the amount that she bid for each unit won.

In a model where  can be any positive real number below a certain threshold value,

Ausubel and Cramton (2002) show that under certain circumstances the pay-your-bid auction

results in an efficient allocation of the object. To be more precise, the pay-your-bid auction

is efficient if (1) bidders are symmetric, in the sense that the joint distribution governing

the bidders’ valuations is symmetric with respect to the bidders, (2) each bidder  has a

constant marginal valuation for every quantity  ∈ [0 ] where  is a capacity limitation on
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the quantity of units that bidder  can consume, and (3) the bidders are symmetric in their

capacity limitations:  = , for all bidders . Otherwise, the auction may be inefficient. One

reason for this is that bidders submit a higher bid on the first unit than on the second if they

have the same value for each unit.67

However, Swinkels (1999) shows in a general setting that if the number of bidders gets

arbitrarily large, the inefficiency in the pay-your-bid auction goes to zero. This result is

interesting, as it shows that the pay-your-bid auction does rather well when the seller is able

to attract a large number of bidders. This may partly explain why the pay-your-bid auction is

popular in practice, for instance to sell treasury bills.68 In addition, this result also formalizes

the more general idea that competition in a market leads to an efficient allocation of resources

when none of the agents has market power.

Uniform-Price Auction

In the uniform-price auction, bidders simultaneously submit sealed-bids comprising inverse

demand curves. Each bidder wins the quantity demanded at the clearing price, and pays the

clearing price for each unit she wins. This auction format raised quite some confusion among

economists. For instance, Nobel Prize winners Milton Friedman and Merton Miller thought

incorrectly that the uniform-price auction was the multi-unit extension of the single unit

Vickrey auction. Both argued that, like in the Vickrey auction, bidders would truthfully reveal

their values in the auction, so that the auction outcome is efficient.69 This is actually only

true under similarly strong symmetry conditions as for the pay-your-bid auction.70 Usually,

however, bidders have an incentive to shade their bidding on some units, so that the uniform-

price auction is inefficient.

The reason is simple: if a bidder can demand more than one unit, she can influence the

market price and she will profit from a lower market price on all the units that she gets.

Suppose that a bidder is bidding for two units to which she attaches the same value. Imagine

that she bids her true value on both units. Then the other bidders may happen to bid in such

a way that her bid on the second unit is the highest rejected bid. In that case, she wins one

unit for which she pays a price equal to her own bid on the second unit. Therefore, she strictly

prefers to bid lower on the second unit. As a consequence, bidding the same for both units

cannot happen in equilibrium.71 This phenomenon has become known as ‘demand reduction’:

bidders understate their true value for some units.

The above example might suggest that demand reduction is limited to a small number

67Engelbrecht-Wiggans and Kahn (1998b).
68Binmore and Swierzbinski (2000).
69Quotations from press articles can be found in Ausubel and Cramton (2002).
70Ausubel and Cramton (2002).
71Noussair (1995) and Engelbrecht-Wiggans and Kahn (1998a) examine uniform-price auctions where each

bidder desires up to two identical units. They find that a bidder generally has an incentive to bid sincerely on

her first unit but to shade her bid on the second unit.



1.4 Multi-Object Auctions 29

of bidders, or is mainly a theoretical concept. However, this is not the case as the following

stylized example shows. Imagine that  bidders compete for  units, which are each worth $1

for every bidder. Suppose that each bidder bids $1 for one unit, and $0 for a second, third,

etc. unit. The resulting price is $0 (the highest rejected bid is equal to $0).

While demand reduction implies that a bidder will not win some units that she would have

liked to win, it is advantageous because it reduces the price which the bidder has to pay for

all those units which she will win. Demand reduction may imply that the auction outcome is

inefficient, and may also result in lower revenues than an efficient auction.72

Like in the pay-your-bid auction, if the number of bidders becomes very large, the outcome

of the uniform-price auction is efficient. The intuition is simple. The probability that a bidder

is the highest losing bidder is zero, and so is the probability that she determines the price.

This may explain why the uniform-price auction is sometimes used in practice, for instance in

auctions for treasury bills.73

The ranking of the uniform-price auction and the pay-your-bid auction in terms of revenue

is ambiguous: depending on the circumstances, the expected revenue of one auction may be

higher than the other.74 Also in practice, like in treasury bill auctions, one auction does not

dominate the other in terms of expected revenue.75

Multi-Unit Vickrey Auction

We have just observed that both the pay-your-bid auction and the uniform-price auction are

inefficient in many circumstances. The multi-unit Vickrey auction (proposed by Vickrey, 1961)

solves this problem. In fact, the multi-unit Vickrey auction is the correct generalization of the

single unit Vickrey auction. The rules are the following. Bidders submit demand schedules.

The auctioneer orders the bids from highest to lowest and awards the  highest bids. Each

bidder pays for the -th unit that she wins an amount equal to the -th highest rejected bid

of her opponents. In other words, each bidder should pay for the externality that she imposes

on the other bidders by winning.

Let us discuss a simple example to clarify the rules of the multi-unit Vickrey auction.

Example 1.2 Imagine that three bidders bid for three units. Their bids on the j-th unit are

given in Table 1.5. Bidder 1 wins two units, as she submits the highest two bids, and bidder

2 wins a single unit, as her bid on the first unit is the third highest bid. Bidder 1 pays 10, as

the highest two rejected bids from the other bidders are 6 and 4. Similarly, bidder 2’s payment

is 7. N

72Ausubel and Cramton (2002) and Engelbrecht-Wiggans and Kahn (1998a).
73Binmore and Swierzbinski (2000).
74Ausubel and Cramton (2002).
75Binmore and Swierzbinski (2000).
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Unit\Bidder 1 2 3

1st 10 8 6

2nd 9 4 3

3rd 7 3 3

Table 1.5: Bids on the j-th unit for each bidder.

The multi-unit Vickrey auction has an equilibrium in weakly dominant strategies, in which

each bidder bids her value for each unit. In such an equilibrium, the outcome is efficient. Still,

the multi-unit Vickrey auction is rarely used in practice, presumably for the very same reasons

why the Vickrey auction is hardly ever applied: it may not be very obvious to bidders that it is

optimal for them to reveal their demand, items may be sold far below the winner’s willingness-

to-pay, and bidders may not be willing to reveal information in the auction as the seller may

use this information in later occasions. In the multi-unit case, there is another reason why

Vickrey auctions are not very popular. As the above example shows, the per unit price may

differ substantially, usually at the advantage of ‘large’ bidders, i.e., bidders who win many

units in the auction. Politically, this may be hard to sell.

Ausubel Auction

The Ausubel auction (named after Lawrence Ausubel) is the dynamic version of the multi-unit

Vickrey auction. In this sense, the Ausubel auction is the correct generalization of the single

unit English auction. The rules are the following. The auction price starts at zero and then

increases continuously. At any price, each bidder indicates how many units she wants. At a

certain price, it will happen that one bidder is guaranteed to win one or more units. This is the

case when the aggregate demand of the other bidders is smaller than the available number of

units. The bidder then wins the residual supply at the current price. In Ausubel’s words: the

bidder ‘clinches’ these units. The auction then continues from this price with the remaining

units, until the next unit is clinched. This process continues until all units are allocated. The

Ausubel auction has roughly the same advantages over the multi-unit Vickrey auction as the

English auction has over the Vickrey auction under single-unit supply.76

Simultaneous Ascending Auction

The SAA may also be implemented to allocate identical objects to bidders who demand more

than one unit. However, the SAA loses many of the nice properties we discussed in the previous

section. In particular, the SAA is sensitive to collusion, demand reduction, and the ‘exposure

problem’.

76Ausubel (2004).
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The German GSM auction shows how bidders may be able to collude under the SAA.

In 1999, the German government auctioned ten GSM licenses using the SAA with a 10%

minimum bid increment. In the first round, Mannesmann made a jump-bid of 18.18 million

Deutsche Mark (DM) per megahertz (MHz) on the first five licenses, and 20 million DM on

the last five. Doing so, Mannesmann signalled to its main competitor T-Mobile that it would

be happy to share the ten licenses equally. To see this, observe that if T-Mobile overbids the

standing high bid on licenses 1-5 with 10%, the final price is almost exactly 20 million DM

per MHz. T-Mobile indeed understood Mannesmann’s signal, and the auction ended after just

two rounds.77

This example also shows that the SAA is sensitive to demand reduction. If Mannesmann

and T-Mobile had bid up to their willingness-to-pay for the ten licenses, the auction probably

would have ended with a much higher price per MHz. Even ignoring the possibility to collude,

bidders have a strong incentive to reduce their demand in order to avoid winning items at a

high price. Demand reduction is also reported in US spectrum auctions.78

Finally, the SAA is sensitive to the so-called exposure problem. The exposure problem

occurs if bidders face the risk of winning too few objects. This may result in low revenue

and an inefficient allocation of the objects.79 The 1998 GSM auction in the Netherlands is an

example of a situation in which the exposure problem was present. The Dutch government

had split up the spectrum in 18 licenses. Two of these licenses contained sufficient spectrum

to operate a GSM network. The other 16 licenses, however, were so small that an entrant

needed at least four of them to be able to operate a network. Bidders were discouraged to

submit high bids on the small licenses, as they faced the risk of being overbid on a fraction

of them, and winning insufficient spectrum. In fact, the per MHz price on the large licenses

turned out to be about two and a half times as high as for the small licenses. This violation

of ‘the law of one price’ may indicate that the allocation of the licenses was inefficient.80

1.4.4 Auctions of Multiple Non-Identical Objects with Multi-Object De-

mand

In the previous sections, we have observed that with single-object demand or identical ob-

jects, rather straightforward auctions generate an efficient allocation of the objects. In this

section, we will see that in the case of multi-object demand and non-identical objects, there

is still a mechanism that result in an efficient allocation, but that this mechanism has serious

practical drawbacks. We will discuss innovative new designs that may partly mitigate these

disadvantages.

77Jehiel and Moldovanu (2001) and Grimm et al. (2003).
78Weber (1997).
79Onderstal (2002b) and van Damme (1999).
80Onderstal (2002b) and van Damme (1999).
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Vickrey-Clarke-Groves Mechanism

We start by describing the Vickrey-Clarke-Groves (VCG) mechanism, which is efficient under a

large range of circumstances. The VCG mechanism is developed by Clarke (1971) and Groves

(1973), and generalizes the (multi-unit) Vickrey auction.81 The most important property of

VCG mechanisms is that these are able to allocate objects efficiently under fairly general

conditions. Let us study the following model to make this claim more precise.

Assume that a seller wishes to allocate  objects among  bidders, labeled  = 1  .

Let Γ be the set of possible allocations of the  objects over the bidders, and  the monetary

transfer by bidder  (where a negative number indicates a payment to bidder ). Bidder  has

the following quasi-linear utility function:

(  ) = ( )− 

where  ∈ Γ is a feasible allocation,  a valuation function, and  bidder ’s type, which

is private information to bidder . Note that this model is very general: no assumptions are

made with respect to the risk attitude of the bidders and the distribution of the types, no

structure is assumed on the complementarity or substitutability of the objects, even allocative

externalities are included in this model. The main restrictions are (1) that utility is additively

separable in money and the allocation of the objects, (2) a bidder’s utility does not depend

on other bidders’ types, and (3) the exclusion of financial externalities, i.e., a bidder’s utility

does not depend on how much other bidders pay. Note that in this model, an allocation ∗ of
the objects over the bidders is ex post efficient if and only ifX



(
∗ ) ≥

X


( ) for all  ∈ Γ (1.6)

A VCG mechanism has the following properties. All bidders are asked to announce a type

̃. Let ̃ be the vector of announcements, i.e., ̃ ≡ (̃1  ̃). The objects are allocated

efficiently under the assumption that the ̃’s are the true types. Let 
∗(̃) denote such an

allocation. Moreover, bidder  pays an amount (̃) equal to

(̃) =
X
 6=

(
∗
−(̃) ̃)−

X
 6=

(
∗(̃) ̃) (1.7)

with ∗−(̃) an allocation that would be efficient if there were only  − 1 bidders  6=  and

the announced types were the true types. In words, bidder  pays an amount equal to the

externality that she imposes on the other bidders.

81Clarke and Groves constructed this mechanism for a class of problems that is far more general than the

allocation of objects: their mechanism applies to any public choice problem.
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Lemma 1.3 For each bidder, it is a weakly dominant strategy to announce her true type in a

VCG mechanism.

The following result then immediately follows from Lemma 1.3, as in equilibrium the

allocation of the objects is efficient by (1.6).

Proposition 1.11 The VCG mechanism has an efficient equilibrium in weakly dominant

strategies.

Unfortunately, the VCGmechanism has many practical disadvantages. We have elaborated

on several of these disadvantages while discussing the Vickrey auction and the multi-unit

Vickrey auction: (1) it is not straightforward for bidders to understand how to play the

auction, (2) the outcome may be politically problematic as items may be sold far below the

willingness-to-pay of the winner, (3) bidders may not be willing to reveal information in the

auction as the seller may use this information on later occasions, and (4) the per unit price may

differ substantially, usually at the advantage of ‘large’ bidders. In the case of heterogeneous

objects, there are several additional drawbacks. First, bidding is complex as bidders have to

specify bids on all packages they desire to win. If 10 objects are for sale, a bidder may specify

a bid on 210 − 1 = 1023 packages. Second, more competition may lead to lower prices, which
may be as low as zero even if competition is fierce. The VCG mechanism may thus result in an

outcome in which the winning bidders may pay so little that a group of non-winning bidders

is willing to bid more collectively.82 Some argue this is not a fair allocation. Third, the VCG

mechanism is sensitive to collusion. Fourth, the VCG mechanism is not robust against ‘shill

bidding’.

Milgrom (2004) constructs a very nice example to illustrate the last three problems. Sup-

pose that two spectrum licenses (A and B) are put up for sale. Assume first that there are

only two entrants interested in buying the licenses. For each of them the value of a single

license is $0. The pair of licenses is worth $1 billion for bidder 1 and $900 million for bidder

2. If these bidders are the only bidders in the auction, the VCG mechanism boils down to

a Vickrey auction where the pair of licenses is for sale. Bidder 1 will win both licenses for a

price of $900 million.

Now, suppose that two incumbents also participate in the auction. Bidder 3 [Bidder 4] is

already active in region B [region A] and is only interested in license A [license B], for which

she is willing to pay $1 billion. If all four bidders play their weakly dominant strategy in the

VCG mechanism, then the licenses will be allocated to the incumbents (as this is the most

efficient allocation). Surprisingly, both bidders get the licenses for free. Why? If one of the

incumbents does not show up, the value to the other bidders is $1 billion, which happens to

82 In auction theoretic terms we say that such an outcome is not in the ‘core’. When objects are substitutes

[complements], the VCG mechanism produces [does not produce necessarily] core outcomes (see Ausubel and

Milgrom, 2006).
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be exactly the same value to the other bidders if she is present. In other words the externality

she imposes on the other bidders is $0. To summarize, more intense competition may lead to

lower revenue to the seller.

Next, imagine that bidders 3 and 4 only have a value for a license equal to $400. In the

case that they play their weakly dominant strategies, they will not win a license. However, if

they coordinate in such a way that both bid $1 billion on their license, they do win for a price

of $0. In other words, the VCG mechanism is sensitive to collusion.

Third, consider another situation in which bidders 1 and 2 participate, together with a

third entrant who values the two licenses at $800 million. If all players play their weakly

dominant strategies, bidder 3 will not win. However, bidder 3 can hire a ‘shill’ bidder. If

she and the shill bidder bid $1 billion on license A and B respectively, then they will win

both licenses for a price equal to zero. Hence, the VCG mechanism is not robust against shill

bidding.

Clock-Proxy Auction

In the previous section, we have seen that the VCG mechanism, though efficient in theory, has

some serious practical drawbacks. Ausubel, Cramton, and Milgrom (2006) propose the clock-

proxy auction (CPA) as an alternative to mitigate these disadvantages. The CPA consists of

two stages: a clock phase and a proxy round.

In the clock phase, the auctioneer announces a price for each object put up for sale. The

bidders express the quantities of each object desired at the specified prices. Then the prices

are increased for objects in excess demand, while other prices remain unchanged. Next, the

bidders express quantities at the new prices. This process is repeated until there is no object

with excess demand. The market-clearing prices serve as a lower bound on the prices in the

proxy phase.

The proxy phase consists of a single round in which each bidder reports her values to a

proxy agent for all packages she is interested in. Budget constraints can also be reported. The

proxy agent iteratively submits package bids in an ascending package auction on behalf of the

real bidder, selecting these packages that would maximize the real bidder’s profit given the

bidder’s reported values. After each round, the auctioneer selects the provisionally-winning

bids that maximize revenues, also considering the bids submitted in the clock phase. This

process continues until the proxy agents have no new bids to submit.83 The winners pay an

amount equal to the standing high bids.

There are several reasons why the CPA may be expected to result in desirable outcomes.

First, when objects are substitutes, the CPA is efficient, just as the VCGmechanism.84 Second,

83 It would take very long for the process to complete if the auctioneer ran the proxy auction with negligible

bid increments. However, the process can be accelerated by using various methods, see Day and Raghavan

(2007), Hoffman et al. (2006), and Wurman et al. (2004).
84Ausubel and Milgrom (2002).
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the auction ends at a ‘core’ allocation for the reported preferences when bidding is straight-

forward, implying seller revenues are competitive.85 In other words, the seller will always

generate sufficient revenue if competition is fierce. This is in contrast to the VCG mecha-

nism, in which the revenue may decrease all the way down to zero if additional bidders enter

the auction, as the example in the previous section showed. Third, the CPA is expected to

handle pretty well other complications of the VCG mechanism (such as collusion), and of the

SAA (collusion, demand reduction, and the exposure problem).86 Fourth, the CPA has the

advantage that in the clock phase, valuable information about the prices can be revealed, in

contrast to sealed-bid formats such as the VCG mechanism.

Still, the CPA has at least three disadvantages. First, truthfull bidding is not optimal

anymore.87 Second, the proxy phase consists of a single round, so that there is no way for

bidders to learn from each others’ bid about the values of the packages. The practical reason

for this is that the allocation problem is ‘NP-hard’: there are no general ways for solving

the problem in reasonable time, so that it may take a long time for subsequent rounds to

finish.88 Third, if competition is strong and objects are mostly substitutes, then a clock auction

without a proxy round may be a better approach, since it offers the greatest simplicity and

transparency, while being highly efficient.89 In fact, clock auctions have been implemented

in the field for products like electricity in recent years with considerable success.90 In this

simple setting, the SAA also performs well. However, a clock auction is to be preferred as it

has a couple of advantages over the SAA: (1) complex bid signalling and collusive strategies

are eliminated, since the bidders cannot see individual bids, but only aggregate information,

(2) the exposure problem is eliminated: bidders are free to reduce quantities on any object

(as long as at least one price increases), and (3) clock auctions are faster, as the SAA is in

particular slow near the end when there is little excess demand.

Hierarchical Package Bidding Auction

Another design that mitigates the practical disadvantages of the VCG mechanism is the hi-

erarchical package bidding auction (HPBA) as proposed by Goeree and Holt (2010).91 The

HPBA is a package bidding variant of the SAA. In the HPBA bidders not only can bid on indi-

vidual objects but also on predefined packages of objects. These packages have a hierarchical

structure with a fixed number of levels or tiers. Within each level, packages do not overlap,

85Ausubel and Milgrom (2002).
86Ausubel et al. (2006).
87See Goeree and Lien (2009).
88See, e.g., de Vries and Vohra (2003). Rothkopf et al. (1998) show that with “hierarchical” pre-packaging

of objects computational issues can be avoided.
89Ausubel et al. (2006).
90Ausubel and Cramton (2004).
91This auction design has been used by the FCC in the 700MHz auction (FCC auction #73). For more

information, see http://wireless.fcc.gov/auctions/default.htm?job=auction_summary&id=73.
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and a package of a lower level fits in exactly one higher level package.92 In the HPBA, the

provisionally winning bids for individual objects or packages in a particular round are those

that maximize seller revenue.93 Prices for all individual objects and packages are determined

such that they signal the bid amounts required to unseat the current provisional winners.94

The HPBA has two important advantages. First, the winner determination problem is re-

cursive and can be solved in a linear manner, because with the hierarchical structure, revenue-

maximizing “winners” at one level can be compared with those at the next level up in the

hierarchy. Second, the HBPA provides a simple and intuitive pricing rule that indicates how

high to bid in a subsequent round to beat the current provisionally winning bids. If a top level

(e.g. nationwide) package bid is provisionally winning then the non-overlapping nature of the

lower level packages together with the simple pricing feedback allows smaller (e.g. regional)

bidders to avoid the threshold problem.95

Pre-packaging comes however at a cost. Without extensive knowledge of bidders’ valua-

tions, there will be some efficiency loss due to the fact that the predefined packages do not

completely coincide with the bidders’ preferred packages. If a bidder has super-additive values

for multiple objects that are not spanned by a particular package definition, then he is not

fully protected from exposure risk.

Goeree and Holt (2010) have tested the HPBA (using laboratory experiments based on

two-layer and three-layer hierarchies) against the SAA and a flexible package bidding auction

(FPBA). In the presence of value complementarities, the HPBA significantly outperforms the

SAA due to the exposure problem in the latter auction.96 HPBA also performed much better in

terms of auction revenues and efficiencies than the FPBA even though the predefined packages

allowed under the HPBA did not match the preferred packages for half of the regional bidders

(non-top-layer bidders). One factor that contributed to this is that the custom packages

constructed under the FPBA tended to overlap, causing a “fitting problem” that made it

difficult for strong regional bidders to unseat a top-layer bid. Another factor is that in rounds

when the national bidder won nothing, regional bidders were unable to coordinate their bids

under the FPBA while under the HPBA there were almost no coordination problems.

92For instance, if there are only three levels then the lowest could contain individual licenses, the middle level

could contain non-overlapping regional packages, and the highest level could contain the national package.
93The winning set of bids may consist of bids from various levels, as long as each object is included in only

one winning bid.
94 If a bid on an individual object is provisionally winning, then that bid becomes the price for the object in

the next round, as is the case for SAA. If a bid on a package is provisionally winning, then the prices for the

individual objects in this package will be scaled up by lump-sum “taxes” to share the burden of unseating a

provisionally winning package bid.
95The threshold problem (sometimes called the free-rider problem) is a coordination problem between the

smaller bidders. These bidders can outbid the larger bidder (the sum of their values is higher than the value of

the package to the large bidder) by coordinating their actions, but the incentive to avoid a large payment may

result in a coordination failure and they may not win the auction.
96Brunner et al. (2010) experimentally test several combinatorial auction formats against the SAA. All these

combinatorial auction formats yield improved performance when value complementarities are present.
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1.4.5 Summary

In this section, we have studied multi-object auctions, focussing on the trade-off between

efficiency and complexity. Table 1.6 gives an overview of efficient auctions under different

assumptions with respect to the bidders’ demands. These auctions are ‘simple’, apart from

the VCG mechanism when bidders have demand for several non-identical objects. We have

argued that the CPA and the HPBA are reasonable substitutes for this mechanism.

Identical Objects Non-Identical Objects

Single-Object Demand Pay-Your-Bid Auction SAA

Multi-Unit Dutch Auction

Uniform-Price Auction

Multi-Unit English Auction

Multi-Object Demand Pay-Your-Bid Auction (for many bidders) VCG mechanism

Uniform-Price Auction (for many bidders)

Multi-Unit Vickrey Auction

Ausubel Auction

Table 1.6: Efficient auction formats.

1.5 Conclusions

In this paper, we have made a swift tour of auction theory and its applications. We have

roughly followed the historical development of the field which started, in the 1960s, with the

work of William Vickrey. For single-object auctions, we have observed how auction theorists

have developed the celebrated revenue equivalence theorem, how they have constructed revenue

maximizing auctions, and how they have shown that under various circumstances the revenue

equivalence between commonly used auctions breaks down. One of the main findings has been

the trade-off between efficiency and revenue. In addition, we have discussed how to optimally

auction incentive contracts. For multi-object auctions, we have seen that a new trade-off enters

the picture, namely the trade-off between efficiency and complexity.

We have also observed how auction-like games such as the all-pay auction and the war of

attrition have been applied to a range of economic situations, such as lobbying and technology

battles. In fact, any situation in which several ‘agents’ ‘compete’ for a ‘prize’ might be fruitfully

modeled as an auction. Examples are tax competition (several jurisdictions offer advantages

to attract new factories), the labor market (several firms make a job offer to a potential

employee), and advertising (several firms spend money and effort in advertising to attract
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customers).97

Analysis of the highly important question whether, or under what circumstances, auctions

are appropriate allocation mechanisms was beyond the scope of this paper. On this topic,

a few good sources are already available.98 One argument often heard against (high stake)

auctions is that auctions may increase consumer prices. This argument is in contrast with the

theory of sunk costs. Still, theorists and experimental economists have found some support.99

Another counter argument is that, if firms - with hindsight - have paid too much (for example

due to changing market developments), firms will invest less (in new technology) compared to

a situation in which the firms had not overbid.100

1.5.1 Outline of the Thesis

Chapters 2 through 5 of this Ph.D. thesis contain four published papers in auction theory.101

Each chapter can be read independently from the other chapters. Chapter 2 studies auc-

tions with financial externalities. It underpins the revenue ranking result with respect to

Assumption (A8) in Table 1.2. It also performs a study of the effect of a reserve price on

equilibrium bidding. Chapter 3 analyzes fund-raising mechanisms. The American Association

of Fundraising Counsel has estimated that the population in the USA donates yearly circa 250

billion dollar to charity. Although charity is big business, not much is known about what the

most effective way is to raise money. This chapter ranks the revenues of standard winner-pay

auctions, all-pay auctions and lotteries and characterizes the optimal mechanism. Chapter 4

studies simultaneous pooled auctions with multiple bids and preference lists. In these auctions

single-object demand bidders submit bids for every object for sale, and a preference ordering

over which object they would like to get if they have the highest bid on more than one object.

This type of auction has been used in the Netherlands and in Ireland to auction available

spectrum. The main target of this chapter is to examine whether this type of auction satisfies

elementary desirable properties such as the existence of an efficient equilibrium. Chapter 5

analyzes how inefficient auction outcomes due to strong negative (informational) externalities

(created by post-auction interactions) can be avoided.102 As we will see, a surprisingly simple

mechanism can do the job.

97First steps in this direction have been made by Menezes (2003) (tax competition), Julien et al. (2000)

(labor market), and Onderstal (2002a) (advertising).
98See, e.g., Janssen (2004).
99See Janssen (2006), Janssen and Karamychev (2009), and Offerman and Potters (2006). Haan and Toolsema

(2011), in contrast, show that prices may decrease when firms pay high prices in auctions if firms are limitedly

liable.
100Zheng (2001) and Haan and Toolsema (2011) investigate what governments can do to prevent firms from

overbidding.
101The references are, respectively: Maasland and Onderstal (2007); Goeree et al. (2005); Janssen et al.

(2010); and Janssen et al. (2011).
102This negative externality reflects the fact that often in an auction where some after-auction interaction (such

as after-market competition) takes place, a bidders’ type (such as a measure of his cost efficiency) positively

affects his own value but negatively inflicts upon the value of the competitor.
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1.6 Appendix: Proofs

Proofs of Propositions 1.1, 1.5, 1.6, and 1.10, and Lemmas 1.1-1.3 follow.

Proof of Proposition 1.1. Two different techniques can be used to prove this proposition.

The first is the ‘direct’ method, in which we assume that all bidders but bidder 1 use the

same bidding strategy  : [0 ̄] → [0∞). Then we construct the best response 1 for bidder
1, and we derive conditions under which this best response is equal to (1). This yields us an

educated guess of what may be a symmetric Bayesian-Nash equilibrium. Finally, we need to

check whether this strategy indeed constitutes an equilibrium.

For the moment, assume that  is strictly increasing and differentiable. Let −1 be the
inverse function of . Bidder 1’s expected payoff from bidding 1 is given by the difference

between her value and her bid, multiplied by the probability that she wins:

1(1 1 ) = (1 − 1) Pr(1  (2)  1  ())

= (1 − 1) (
−1(1))−1

When deriving bidder 1’s best response, the first order condition is

1

1
= (1 − 1)

 (−1(1))−1

1
−  (−1(1))−1

= (1 − 1)
(− 1) (−1(1))−2(−1(1))

0 (−1(1))
−  (−1(1))−1 = 0

We wish to construct a symmetric equilibrium, so that 1 = (1), or 
−1(1) = 1 for all 1.

The above first order condition then yields the differential equation

0 () ()−1 = ( − ())(− 1) ()−2()

or equivalently

0 () ()−1 + ()(− 1) ()−2() = (− 1) ()−2()

Solving for this differential equation, we get

() ()−1 =

Z
0

(− 1) ()−2 () + 

where  is the constant of integration. As a bidder with value 0 will always bid 0 in equilibrium,

the boundary condition is (0) = 0, so that  = 0. Hence, a natural candidate for a symmetric
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Bayesian-Nash equilibrium is

() =

R
0

(− 1) ()−2 ()

 ()−1
=  −

R
0

 ()−1

 ()−1
 (1.8)

where the second equality follows from integration by parts. It can be shown that  is indeed

strictly increasing and differentiable, the assumptions we started with. An implication is that

the equilibrium outcome is efficient, i.e., it is always the highest bidder who obtains the object.

Finally, we have to check that  is indeed an equilibrium. Assume that all bidders but

bidder 1 submit a bid according to . Is it optimal for bidder 1 to follow this strategy as well?

As  is strictly increasing, the bidder with the highest value submits the highest bid and wins

the auction. Obviously, bidder 1 does not wish to submit a bid 1  (̄). As  is strictly

increasing and continuous, a bid 0 ≤ 1 ≤ (̄) corresponds to a unique value  for which

() = 1. We can write bidder 1’s expected profit from bidding 1 as

( 1) =  ()−1(1 − ())

=  ()−1(1 − ) +

Z
0

 ()−1

≤
1Z
0

 ()−1

= (1 1)

regardless of whether  ≥ 1 or  ≤ 1. Therefore, bidder 1 optimally chooses 1 = (1) so

that indeed  constitutes a symmetric Bayesian-Nash equilibrium.

The ‘indirect’ method is an alternative way to derive a symmetric Bayesian-Nash equilib-

rium. Let  : [0 ̄] → [0∞) be the equilibrium bid function for bidder  We assume that

all bidders reveal a value to the auctioneer, and that the auctioneer calculates the equilibrium

bids as if the signals were the true signal. To prove that the bidding function  constitutes

an equilibrium, we must show that all bidders have an incentive to reveal their true value.

Again, we start by assuming that all bidders but bidder 1 use the same bidding strategy

 : [0 ̄]→ [0∞). Next, we define the utility ( ) for bidder 1 having value  who misrep-
resents herself as having value , whereas the other bidders report truthfully. Then we derive

conditions under which bidder 1 wishes to honestly reveal her type. From these conditions,

we are able to derive the equilibrium bidding strategy.

For the moment, assume that  is strictly increasing and differentiable. Then

( ) = ( − ()) ()−1
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so that
()


= ( − ())

 ()−1


− 0() ()−1 (1.9)

For bidder 1, it should be optimal to reveal her true value, so that ( ) is maximized at

 = . Hence, the first order condition of the equilibrium is

( )



¯̄̄̄
=

= 0

The resulting differential equation turns out to be the same as under the ‘direct’ method, so

that (1.8) is a solution.

We still need to verify whether the second order condition (
()


) = ( − )

holds true. Observe that (1.9) can be rewritten as:

()


=

()



¯̄̄̄
=

+ ( − )(− 1) ()−2()

= ( − )(− 1) ()−2() (1.10)

The second equality follows from the observation that

()



¯̄̄̄
=

= 0

From (1.10), it immediately follows that the second order condition is satisfied.

As it is always the bidder with the highest value who submits the highest bid, the expected

revenue  equals the expected bid of the bidder with the highest value:

 =

Z
0

() ()


=

Z
0

 () −
Z
0

()

Z
0

 ()−1

=

Z
0

 () −
Z
0

Z


() ()−1

=

Z
0

 () − 

Z
0

(1−  ()) ()−1

=

Z
0


£
 () + (1−  ()) ()−1

¤
= { 

2 }
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where the third equality is obtained by changing the order of integration and the fifth equality

by integration by parts. ¥

Proof of Proposition 1.5. We use the ‘indirect’ method to solve for the symmetric equilib-

rium bidding strategies. Let  be a strictly increasing and differentiable bidding function, and

assume that all bidders but 1 use this strategy. Imagine that bidder 1 with value  wishes to

act as if having value . Let ( ) be bidder 1’s expected utility. Then,

() =  ()−1 − ()

Maximizing ( ) with respect to  yields the first order condition of the equilibrium:

(− 1) ()−2()− 0() = 0

Integrating over  and applying the boundary condition (0) = 0 yields

() = (− 1)
Z
0

 ()−2 ()

It is readily verified that  is indeed strictly increasing and continuous, and that the second

order condition holds. As all bidders pay their bid, the seller expects to collect [()] which

can be shown to be equal to { 
2 }. ¥

Proof of Proposition 1.6.We use the ‘direct’ method to derive the equilibrium. Assume that

bidder 2 employs the strictly increasing and differentiable bidding function . The expected

utility for bidder 1 when bidding 1 is equal to

(1 1 (·)) =
−1(1)Z
0

(1 − ()) ()− 1(1−  (−1(1)))

where the first [second] term on the right hand side indicates bidder 1’s utility when she wins

[loses]. The first order condition can be expressed as



1
= (1 − 1)(

−1(1))(−1(1))0 − (1−  (−1(1))) + 1(
−1(1))(−1(1))0 = 0

Substituting −1(1) = 1 and some routine calculations yield

0(1) =
1(1)

1−  (1)

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Solving for  with boundary condition (0) = 0, we obtain

() =

Z
0

()

1−  ()
 (1.11)

as a candidate for the symmetric Bayesian Nash equilibrium. It is then straightforwardly

checked that  indeed constitutes an equilibrium. The expected equilibrium revenue equals

twice the bid of the lowest bidder, which, once again, is equal to { 
2 } (with  = 2). ¥

Proof of Lemmas 1.1 and 1.2. Let us first introduce some additional notation and concepts.

Define the sets  ≡ [0 ̄] and − ≡ [0 ̄]−1 with typical elements v ≡ (1  ) and

v− ≡ (1  −1 +1  ) respectively. Let (v) ≡ (1) · · · () be the joint density of
v, and let −(v−) ≡ (1) · · · (−1)(+1) · · · () be the joint density of v−.

We define an auction as follows. In an auction, bidders are asked to simultaneously and

independently choose a bid. Bidder  chooses a bid  ∈ , where  is the set of possible bids

for bidder ,  = 1  . Let b = (1  ) be the vector of bids. An auction is characterized

by its outcome functions (b b)=1, where b(b) is the probability that bidder  wins the
object, and b(b) is the expected payment of bidder  to the seller.

Lemma 1.1 follows from the following considerations. Consider an auction and the following

direct revelation game. First, the seller asks each bidder to announce her value. Then, he

determines the bid that each bidder would have chosen in the equilibrium of the auction given

her announced value. Next, he implements the outcomes that would result in the auction

from these bids. As the strategies form an equilibrium of the auction, it is an equilibrium for

each bidder to announce her value truthfully in the direct revelation game. Therefore, the

revelation game has the same outcome as the auction, so that both the seller and the bidders

obtain the same expected utility as in the equilibrium of the auction.103

Bidder ’s utility of direct revelation mechanism ( ) given v equals (v) − (v), so

that if bidder  knows her value , her expected utility from ( ) can be written as

(  ) ≡
Z
−

{(v)− (v)}−(v−)v− (1.12)

with v− ≡ 1−1+1.

The individual rationality constraint follows from the assumption that each bidder expects

nonnegative expected utility, so that

(  ) ≥ 0, ∀  (1.13)

103Note that we have already applied the revelation principle in the ‘indirect method’ for deriving an equilib-

rium for an auction (see the proof of Proposition 1.1).
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The incentive compatibility constraint is imposed as we demand that each bidder has an

incentive to announce her value truthfully. Thus,

(  ) ≥
Z
−

{(v− )− (v− )}−(v−)v−, ∀  

where (v− ) ≡ (1  −1  +1  ).

The seller aims at finding an auction which gives him the highest possible expected revenue

(the seller’s problem). The seller’s expected revenue of ( ) is

0( ) ≡
Z


X
=1

(v)(v)v (1.14)

with v ≡ 1.

Now, let

( ) ≡ −{(v)}

be the conditional probability that bidder  wins the object given her value . Lemma 1.4

gives a characterization of direct revelation games that are individually rational and incentive

compatible.

Lemma 1.4 The direct revelation game ( ) is individually rational and incentive compatible

if and only if

() ≥ ( ) if  ≥ , ∀   (1.15)

(  ) = (  ) +

Z


( ) ∀  and (1.16)

(  ) ≥ 0 ∀ (1.17)

Proof. Incentive compatibility implies

(  ) ≥ (  ) + ( − )( ) (1.18)

so that ( ) is individually rational and incentive compatible if and only if (1.13) and (1.18)

hold. With (1.18),

( − )() ≥ (  )− (  ) ≥ ( − )( )

from which (1.15) follows. Moreover, these inequalities imply

(  )


= ( ) (1.19)
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at all points where  is differentiable in . By integration of (1.19), (1.16) is obtained. Finally,

with (1.13) and (1.16), individual rationality is equivalent to (1.17).

Now, with (1.12), the seller’s expected revenue (1.14) can be rewritten as

0( ) =

X
=1

Z


(v)(v)v −
X
=1

̄Z


(  )() (1.20)

Taking the expectation of (1.16) over  and using integration by parts, we obtain

{(  )} = (  ) +

½
1− ()

()
(v)

¾
 (1.21)

Lemma 1.2 follows from (1.20) and (1.21). ¥

Proof of Proposition 1.10. The proof consists of two parts: first we consider which mech-

anisms are incentive compatible by looking at firms’ bidding behavior, after which we derive

which incentive compatible mechanism maximizes the buyer’s utility.

Firms’ bidding behavior

If all firms bid truthfully, firm ’s expected utility given its efficiency parameter  is equal to

() = −{(α)− (α)(((α))− (α))} (1.22)

where

() =
1

2
2 + 

Let ( ̃) be firm ’s utility if it has efficiency parameter , it announces ̃, and all other

firms truthfully reveal their type. Then

( ̃) = −{(− ̃)− (− ̃)((− ̃))}+ −{(− ̃)(− ̃)}
(1.23)

Incentive compatibility requires that firm  optimally announces its own type, so that

( ̃)

̃
= 0 (1.24)

at ̃ = . From (1.22), (1.23), and (1.24), it follows that

()


=

( ̃)

̃

¯̄̄̄
̃=

+−{(α)(α)} (1.25)

= −{(α)(α)}
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The participation constraint then immediately reduces to

(0) ≥ 0 (1.26)

The buyer’s problem

To maximize the buyer’s utility given (1.25) and (1.26), we apply the Pontryagin principle.

The buyer solves

max
((·)(·)(·))


X


{(α)((α)−((α) ))− ()}

s.t.
̇() = −{(α)(α)}

(0) ≥ 0

This problem looks horrendously complicated, but we can rely on the following three tricks to

make it solvable. First, it can be shown that (α) only depends on . We do not prove this

formally, but the intuition is that  is a stochastic scheme when it depends on announcements

other than . As the firm’s cost function is convex, there is a deterministic scheme that only

depends on  which strictly improves the objective function of the buyer.

The second trick is to keep the ’s fixed, and solve the problem. Let

() ≡ − {(α)} 

For given (), the buyer’s problem can be decomposed into the following  independent

maximization problems:

max
((·)(·))

1Z
0

{()(()− ((α) ))− ()}  ()

s.t.
̇() = ()()

(0) ≥ 0

The third trick in solving the buyer’s problem is to realize that these problems amount

to dynamic optimization programs where  is the state variable and  the control variable.

We can now apply the Pontryagin principle to find a solution. The Hamiltonian  of each

program is given by

(   ) = {()( − ( ))− }  () + ()
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Using the Pontryagin principle, we obtain the first-order condition of the programs:104

̇() =  ()

() =

µ
(

∗
 (α) )


− 1
¶
 ()

(1) = 0

Substituting ( ) =
1
2
2 +− together with some straightforward calculations yields

the optimal effort levels:

∗ (α) =

⎧⎪⎨⎪⎩  − 1− ()
()

if  ≥ 

0 if   

(1.27)

with  the unique solution to  =
1− ()
()

with respect to . Under these effort levels, the

buyer’s problem is reduced to

max
(·)

X




⎧⎨⎩()(
∗
 ()− (

∗
 (α) ))−

Z
0

∗ ()()

⎫⎬⎭ 

which is equivalent to

max
(·)

1

2

X




©
()

∗
 ()

2
ª
 (1.28)

From (1.28), it is straightforward to see to which firm  the project should be allocated. The

buyer’s expected utility is proportional to the sum of the firms’ winning probability and the

square of the optimal effort. By (1.3) and (1.27), (∗ ())
2 is strictly increasing in  for

 ≥ . Therefore, it is optimal for the buyer to maximize the winning probability of the firm

with the highest , i.e., to always allocate the project to the most efficient firm. ¥

Proof of Lemma 1.3. The proof is by contradiction. Suppose that telling the truth is not

a weakly dominant strategy for all bidders. Then for some bidder  there exist a , ̃, and

− ≡ (1,−1,+1 ) such that

(
∗(̃ −) )− (̃ −)  (

∗( −) )− ( −)

Substituting  for (1.7) implies thatX


(
∗(̃ −) ) 

X


(
∗( −) )

which contradicts (1.6). Thus it must be a weakly dominant strategy for each bidder to

104The second order conditions can be shown to hold as well.
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announce her true type. ¥
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Chapter 2

Auctions with Financial

Externalities

2.1 Introduction

In this paper, we study sealed-bid auctions with financial externalities. Financial externalities

arise when losers benefit directly or indirectly from a high price paid by the winner(s). In

auction theory, it is generally assumed that losers are indifferent about how much the winner(s)

pay(s). However, in real-life auctions, this assumption might be false. In reality, an auction

is not an isolated game, as winners and losers also interact after the auction. Paying a high

price in the auction could make a winner a weaker competitor later.

The series of UMTS auctions1 that took place in Europe offers a concrete example of

auctions in which losers benefit indirectly from a high price paid by the winners. In this

context, there are at least three ways that firms that do not acquire a license may benefit

from a winning firm that pays a high price. First, the share values of winning firms may drop,

which makes the winner vulnerable to a hostile take-over by competing firms. For instance,

the drop in share value of the Dutch telecom company KPN of about 95% is (according to

telecom specialists) correlated with the huge sum of money the company spent to acquire

British, Dutch and German UMTS licenses.2 Second, if firms are budget constrained, a high

payment in the first auction may give competing firms an advantage in later auctions. Third,

high payments may force the winning firms to cut their budget for investment, which may be

favorable for the losers’ position in the telecommunications market, as the losing firms are not

only competitors of the winning firms in the auction, but in the telecommunications market

as well. Indeed, Klemperer (2002) argues, on the basis of a study by Börgers and Dustmann

1These are spectrum auctions. UMTS stands for Universal Mobile Telecommunications System: a third

generation mobile telecommunication standard.
2 In the UK, KPN bought part of the TIW license after the auction. In Germany, KPN has a majority share

in E-Plus.
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(2002), that financial externalities might (partly) explain seemingly irrational bidding in the

British UMTS auction.3

Financial externalities occur directly when losing bidders receive money from the winner(s).

For instance, this may happen in the case of bidding rings, in which a member of the ring

receives money when she does not win the object. Also, partnerships are dissolved using an

auction in which losing partners obtain part of the winner’s bid. In takeover contests, losing

bidders who have shares in the target firm receive payoffs proportional to the sales price.

Furthermore, the owner of a large estate may specify in his last will that after his death, the

estate should be sold to one of the heirs in an auction, where the auction revenue is divided

among the losers. Finally, in some premium auctions, the runner-up receives a premium

proportional to the difference between her bid and the minimum price (Goeree and Offerman,

2004).

In Section 2.2, we present a model of bidding in sealed-bid auctions with financial external-

ities. Either the first-price sealed-bid auction (FPSB) or the second-price sealed-bid auction

(SPSB) is used to sell an indivisible object. We assume an independent private signals model,

with private values models and common value models as special cases. Financial externalities

are exogenously given and modelled by a parameter  that is inserted in the bidders’ utility

functions. This is the simplest extension of the independent private signals model which in-

corporates financial externalities. Despite its simplicity, this model appears to be sufficiently

rich to generate interesting insights.

In Section 2.3, we derive results for FPSB and SPSB without reserve price. We find a

unique symmetric and efficient bid equilibrium for each of the two auction types. Equilibrium

bids in FPSB decrease when  increases. An intuition for this result is that larger financial

externalities make losing more attractive for the bidders so that they submit lower bids. The

effect of financial externalities on the equilibrium bids in SPSB is ambiguous. A possible

explanation is that in SPSB, a bidder is not only inclined to bid less the higher  is (as she

gets positive utility from losing), she also has an incentive to bid higher, because, given that

she loses, she is able to influence directly the level of payments made by the winner. Moreover,

we construct an example in which the seller’s revenue increases when  increases. This finding

suggests that the seller may gain more revenue by guaranteeing the losers a fraction of the

auction revenue. This, however, turns out not to be the case: under no circumstances does

revenue sharing increase revenue. Finally, we give a revenue comparison between FPSB and

SPSB. We find that SPSB results in a higher expected revenue than FPSB unless a bidder’s

interest in her own payments is equal to the sum of the other bidders’ interest in what she

pays. In that case, FPSB and SPSB are revenue equivalent.

In Section 2.4, we characterize equilibrium bid strategies for the case that a reserve price

is imposed in FPSB and SPSB. For simplicity, we assume a model with independent private

3Formal analysis is needed to get decisive answers.
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values. In this section, we introduce the concept of a weakly separating Bayesian Nash equilib-

rium, which is an equilibrium in which all types below a threshold type abstain from bidding,

and all types above this type submit a bid according to a strictly increasing bid function. We

find that FPSB has no weakly separating Bayesian Nash equilibrium. However, we derive an

equilibrium in which bidders with low values abstain from bidding, bidders with intermediate

values pool at the reserve price, and bidders with high values submit a bid according to a

strictly increasing bid function. SPSB has a weakly separating Bayesian Nash equilibrium if,

and only if, the reserve price is sufficiently low (or so high that no bidder submits a bid).

Otherwise, the equilibrium involves pooling at the reserve price.

These findings may shed new light on observations of identical bids in auctions. Theoretical

work suggests that several bidders submitting a bid equal to the reserve price is a signal of

collusive behavior.4 Our finding indicates that these identical bids may not be explained by

collusion but by the existence of financial externalities.

2.1.1 Related Literature

Our paper is related to a large range of papers in finance, industrial organization, and micro-

economics that study similar models. In order to better link our paper to this literature, we

anticipate some of the specifics of our model. We define the utility function of each bidder 

as follows:

( ) =

⎧⎪⎨⎪⎩
 −  if  = 

 if  6= 

(2.1)

where  is the value that  attaches to the auctioned object,  is the winner of the auction, 

is the payment by the winner, and   0 is the parameter indicating financial externalities.

Engers and McManus (2007) investigate a related model in the context of charity auctions,

employing the following payoff structure:

( ) =

⎧⎪⎨⎪⎩
 − +  if  = 

 if  6= 

(2.2)

The parameter   0 can be interpreted as an altruistic feeling a person obtains if another

bidder wins the auction (as the auction revenue is transferred to a charitable organization).

 ≥  represents the utility the winner gets for her own contribution, where − is interpreted
as the winner’s ‘warm glow’ for giving to charity. Engers and McManus’ model is a special

case of ours in the sense that in the absence of a reserve price, the equilibrium bids in Engers

4McAfee and McMillan (1992) show that in first-price auctions it is optimal for a bidder who belongs to a

weak cartel (that is, one that cannot make side payments) to submit a bid exactly equal to the reserve price

(provided his value for the object exceeds the reserve price), and rely on the auctioneer’s tie-breaking rule to

randomly select a winner. Competitive bidders would submit identical bids with probability zero.
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and McManus can be constructed from the equilibrium bids in our framework. To see this,

rewrite (2.2) as

( ) = ̃

³
 ̃
´
=

⎧⎪⎨⎪⎩
 − ̃ if  = 

̃ if  6= 

where ̃ = (1− ) , and  =  (1− )−1. Consequently, our model applies with the utility
function ̃.5 Observe that a strictly positive reserve price may imply that the candidate for

the equilibrium bid in our model is below the reserve price, as this bid is constructed by

multiplying the equilibrium bid in Engers and McManus by 1−   1.

Quite some papers in the literature study special cases of Engers and McManus’ model, and

hence special cases of ours.6 For instance, Engelbrecht-Wiggans (1994), Bulow et al. (1999),

Ettinger (2009), and Goeree et al. (2005) [Chapter 3 of this thesis] assume  = , and

apply this model to a large range of economic settings, including charity auctions and take-

over battles in which the bidding firms own a toehold in the target.7 Engelbrecht-Wiggans

(1994) and Engers and McManus (2007) show that SPSB generates more revenue than FPSB,

a result we show to hold true in our context as well. In contrast, Bulow et al. (1999) prove

that small asymmetries in the toehold may imply that FPSB is superior to SPSB in terms of

revenues raised.8 Engers and McManus (2007) and Goeree et al. (2005) [Chapter 3 of this

thesis] show that all-pay auctions dominate winner-pay auctions (such as FPSB and SPSB)

as in the latter auctions, bidders forgo a positive externality if they top another’s high bid.

A specific interpretation of our model is a situation in which all losing bidders equally

share the payment by the winner, i.e.,  = 1(− 1), where  is the total number of bidders.
This may be the case in situations of ‘knock-out’ auctions organized by bidding rings (Graham

and Marshall, 1987, McAfee and McMillan, 1992, and Deltas, 2002), dissolving partnerships

(Cramton et al., 1987, Angeles de Frutos, 2000, Kittsteiner, 2003, and Morgan, 2004), and

heirs bidding for a family estate (Engelbrecht-Wiggans, 1994). If  = 2 and  = 1, then FPSB

and SPSB are special cases of the -double auction with  = 0 and  = 1 respectively (Van

Damme, 1992, and Kittsteiner, 2003).9

5Engers and McManus study their model in an independent private values setting, while we focus on a more

general setting with independent private signals.
6Ettinger (2010) studies a more general model allowing for non-linear financial externalities, and compares

FPSB and SPSB in a model with complete information.
7Engelbrecht-Wiggans (1994) analyzes a model with affiliated signals, while Bulow et al. (1999), Ettinger

(2009) and Goeree et al. (2005) [Chapter 3 of this thesis] study special cases of this model: Bulow et al.

(1999) focus on pure common values, Ettinger (2009) and Goeree et al. (2005) [Chapter 3 of this thesis] on

independent private values.
8Bulow et al. (1999) show that a slight asymmetry in value functions may have dramatic effects on bidding

behavior in the English auction in a common value setting, as the bidder with the lower value function faces a

strong winner’s curse, and therefore bids zero in equilibrium. This extreme outcome does not arise in FPSB.
9The -double auction has the following rules. Both bidders submit a bid. The highest bidder wins the

object, and pays the loser an amount equal to  + (1 − ) , where  is the loser’s bid,  the winner’s



2.2 The Model 61

We add the following to the above mentioned papers. First, we derive comparative statics

that are different from the ones in the other models. For instance, Engelbrecht-Wiggans (1994)

shows that the equilibrium bid functions of FPSB and SPSB are increasing in  if  = . In

our model, the effect of  on the equilibrium bids can be both increasing and decreasing.10

Second, we examine the question whether the seller has an incentive to share a fraction of

the auction revenue with the losing bidders. Bulow et al. (1999) show in their pure common

value setting that the seller may increase the revenue of SPSB by giving a weak bidder a

toehold,11 in contrast to what we find in our model. Third, we analyze the effect of the reserve

price on the equilibrium bids, which, as mentioned, may be different than in the above related

settings since the one-to-one relationship between the equilibrium bid functions ceases to hold.

Ettinger (2009) is one of the few papers that studies auctions with a positive reserve price. In

his framework, he does not observe pooling at the reserve price, in contrast to what we find

in our setting.

2.2 The Model

We consider a situation with  ≥ 2 risk neutral bidders, numbered 1 2  , who bid for one
indivisible object. The auction being used is either FPSB or SPSB.

We use Milgrom and Weber’s (1982) model as a starting point with independent signals

instead of affiliated ones. We assume that each bidder  receives a one-dimensional private

signal  (we also say that bidder  is of type ). We will let (t) denote the value of the

object for bidder  given the vector t ≡ (1  ) of all signals. Special cases are independent
private values models ((t) only depends on ), and common value models ((t) = (t) for

all   t). Without loss of generality, we assume that the signals  are independently drawn

from the uniform distribution on the interval [0 1].12

We make the following assumptions on the functions .

• Value Differentiability:  is differentiable in all its arguments, for all  t

• Value Monotonicity: (t) ≥ 0 (t)
 0

(t)

≥ 0, and (t)




(t)


for all   t

• Symmetry: (     ) = (     ) for all     

bid, and  ∈ [0 1].
10 Intuitively, if both the winner and the losers profit from the payment by the winner, bidders do have more

incentive to bid higher than if only losers profit. This explains why the effect of  and  can be opposite.
11By leveling the playing field in this way, the seller induces a fairer contest. The likely higher auction price

may more than outweigh the cost of giving away the toehold.
12Suppose the signals  are drawn from strictly increasing distribution functions . Such a model is

isomorphic to a model with uniformly distributed signals ̃ and value functions ̃, where ̃ ≡ () and

̃

̃1  ̃

 ≡ (
−1
1 (̃1)  

−1
 (̃)).
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Value Differentiability is imposed to make the calculations on the equilibria tractable.

Value Monotonicity indicates that all bidders are serious and that bidders’ values are strictly

increasing in their own signal and weakly in the signals of the others. Moreover, it includes

a single crossing property. Symmetry may be crucial for the existence of efficient equilibria

in standard auctions. Value Differentiability, Value Monotonicity, and Symmetry together

ensure that the bidder with the highest signal is also the bidder with the highest value. These

assumptions therefore imply that the seller assigns the object efficiently if and only if the

bidder with the highest signal gets it.

Also, let us define ( ) as the expected value that bidder  assigns to the object, given

that her signal is , and that the highest signal of all the other bidders is equal to :

( ) ≡ {(t)| = max
 6=

 = }

By Symmetry,  does not depend on .

The bidders are expected utility maximizers. Each bidder is risk neutral and cares about

what other bidders pay in the auction. The utility of the bidders is as specified in (2.1):

( ) =

⎧⎪⎨⎪⎩
 −  if  = 

 if  6= 

where  is the value that  attaches to the auctioned object,  is the winner of the auction, 

is the payment by the winner, and   0 is the parameter indicating financial externalities. It

is a natural assumption to let a bidder’s interest in her own payments be larger than or equal

to the sum of the other bidders’ interest in her payments, so that we assume  ≤ 1(− 1).
Financial externalities occur directly when the seller pays up to each loser. If the winner

pays  to the seller, then each loser will get . The seller will end up with (1− (− 1)). If
the financial externalities occur indirectly, then the seller will get . Since in the case of direct

financial externalities, the seller does not receive the entire bid of the winner, we distinguish

between the seller’s expected revenues and the expected price, i.e. the total payment by the

winner. Of course, in the case of indirect financial externalities, the seller’s expected revenues

and the expected price are the same.

2.3 Zero Reserve Price

Consider FPSB and SPSB with a zero reserve price. In Section 2.3.1 and Section 2.3.2 we

characterize the equilibrium bid function for FPSB and SPSB, respectively. In Section 2.3.3

we give a revenue comparison between FPSB and SPSB.
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2.3.1 First-Price Sealed-Bid Auction

The following proposition characterizes the equilibrium bid function for FPSB.13 To derive

equilibrium bidding, we suppose that, in equilibrium, all bidders use the same bid function.

By a standard argument, this bid function must be strictly increasing and continuous. Let

( ) be the utility for a bidder with signal  who behaves as if having signal , whereas

the other bidders play according to the equilibrium bid function. A necessary equilibrium

condition is that
( )


= 0

at  = . From this condition, a differential equation can be derived from which the equilibrium

bid function is uniquely determined (at least if we restrict our attention to differentiable bid

functions). The auction outcome is efficient. Observe that in the case of independent private

values (( ) only depends on ), the bid function is strictly increasing in .

Proposition 2.1 The unique differentiable symmetric Bayesian Nash equilibrium of FPSB is

characterized by

1( ) = ( )− 

1 + 
( )− 1

1 + 

Z
0

( )



³


´(−1)(1+)
 (2.3)

where 1( ) is the bid of a bidder with signal . The outcome of this auction is efficient.

Each of the terms of the right-hand side (RHS) of (2.3) has an attractive interpretation.

The first term is the equilibrium bid for a bidder with type  in SPSB without financial

externalities, as in the absence of financial externalities, in SPSB, a bidder will submit a bid

equal to her maximal willingness to pay given that her strongest opponent has the same signal

as she (Milgrom and Weber, 1982). The second term is the bid shading that would occur if

all bidders attached the same value ( ) to the object: in such a situation, if a bidder wins

at a bid of , her utility is ( )− , while if an opponent wins at the same bid, her utility is

. Equating these utilities results in a bid of 1
1+

( ). The third term can be interpreted

as the strategic bid shading because of private values. Note that if  = 0, this term is equal

to the standard strategic bid shading in FPSB.

This interpretation of the equilibrium bid function suggests that this function is decreasing

in , which in fact follows directly from (2.3):

Corollary 2.1 Increasing  decreases B1( ).

Observe that Corollary 2.1 implies that the seller’s revenue is decreasing in , both for

direct and indirect financial externalities. The seller’s revenue in the case of direct financial

13The proof of this and all other propositions are relegated to the appendix.
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externalities is a fraction (1− (− 1)) of the revenues under indirect financial externalities.
Corollary 2.1 implies that revenue under indirect financial externalities is a decreasing function

of , which also holds true for direct financial externalities as (1− (− 1)) is decreasing in
 as well. Therefore, it is not attractive for the seller to have the losers share a fraction of the

auction revenue.

2.3.2 Second-Price Sealed-Bid Auction

Equilibrium bids for SPSB are obtained using the same logic as for FPSB. The analysis

reveals uniqueness and efficiency of the equilibrium bid function. Observe that in the case of

independent private values, the bid function does not depend on .14

Proposition 2.2 The unique differentiable symmetric Bayesian Nash equilibrium of SPSB is

characterized by

2( ) = ( )− 

1 + 
( ) +



(1 + )(1 + 2)

1Z


( )



µ
1− 

1− 

¶ 1+


 (2.4)

where 2( ) is the bid of a bidder with signal . The outcome of this auction is efficient.

Each term of the RHS of (2.4) has its attractive interpretation. From the discussion of

FPSB, it follows that the first term is the bid in SPSB in the absence of financial externalities,

and the second term is the bid shading in the hypothetical situation that all bidders attach

the same value ( ) to the object. The third term increases the bid as a bidder of type  has

an incentive to drive up the payment by types above .

In contrast to FPSB, the effect of an increase in  on the equilibrium bids in SPSB is

dependent on a bidder’s type. From (2.4), it is clear that the equilibrium bid of the highest

type is decreasing in . This bidder does not have a type above her, so that she does not have

an incentive to drive up the price. However, the effect of  on the equilibrium bids of the other

types is not clear. The effect of the second term of the RHS of (2.4) may be larger as well

as smaller than the third term. The following example illustrates how equilibrium bidding is

affected when  is varied.

Example 2.1 (Effect of  on equilibrium bidding) Let ( ) =  for all  ∈ [0 1] and
 = 2 The equilibrium bid function is given by

2( ) =


(1 + )(1 + 2)
+

1

1 + 2
,  ∈ [0 1]

14This is actually a quite subtle observation, as  does not appear in the expression for the equilibrium bid.

However, in general, ( ) depends on .
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It is readily verified that
2(0 0)


= 1  0

and
2(1 0)


= − 1

36
 0

As 2 is a continuous function in both  and , there is a strictly positive mass of types close

to zero for which the effect of  is ambiguous in the sense that for  close to 0, an increase in

 leads to higher bids and for  close to 1, an increase in  leads to lower bids. Intuitively, if

 is large enough, 2( ) decreases as for each bidder, losing becomes more interesting due

to higher financial externalities. N

Also, the effect of  on the expected price paid by the winner is ambiguous. This follows

from Example 2.2, in which the expected price is increasing if  is small, and decreasing if 

is large.

Example 2.2 (Effect of  on the expected price) Let ( ) =  for all  ∈ [0 1] and
 = 2 The expected price is equal to the expectation of 2( 

(2)) with respect to the second

highest signal (2), which is given by

(2){2( (2))} =
1 + 4

3(1 + )(1 + 2)


This continuous function is increasing for  close to 0 and decreasing for  close to 1, as

(2){2(0 (2))}


=
1

3
 0

and
(2){2(1 (2))}


= − 11

108
 0

N

Example 2.2 suggests that the seller might gain more revenue by guaranteeing the losers a

fraction of the payment he receives from the winner. This, however, turns out not to be the

case.

Proposition 2.3 The seller cannot increase his revenue from SPSB by guaranteeing the losing

bidders a share of the auction revenue.

We prove this proposition by using the famous revenue equivalence theorem (Myerson,

1981), which states that the expected utility of the lowest type is a sufficient statistic for the

ranking of efficient auctions: the higher the utility of the lowest type, the lower the expected
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revenue.15 Consider the standard case in which the bidders obtain no indirect financial ex-

ternalities. If the seller pays the losers a fraction of the auction revenue, the lowest type’s

expected utility goes up from zero to a strictly positive number because he gets a fraction of

the second highest bid. As SPSB is efficient, the seller’s expected revenue decreases. This

result turns out to remain valid if the bidders do experience financial externalities, indirect

or direct (e.g., the bidders own a share in the seller), as the lowest type’s utility is strictly

increasing in .

2.3.3 Revenue Comparison

Let us compare the expected revenue from FPSB and SPSB.16 Observe that the revenue

ranking of the two auctions is the same for direct and indirect financial externalities, since

the revenue in the case of direct externalities is a fraction (1− (− 1)) of the revenue under
indirect externalities. As said, the auction for which the lowest type obtains the highest

expected utility generates the lowest expected revenue. It turns out that if   1
−1 , SPSB

generates a strictly higher expected revenue than FPSB.17 For  = 1
−1 , both auctions are

revenue equivalent.

Proposition 2.4 For   1
−1 , SPSB generates a strictly higher expected revenue than FPSB.

For  = 1
−1 , FPSB and SPSB are revenue equivalent.

Intuitively, in SPSB, a bidder can increase the payment by the winner by submitting a

higher bid, which is not the case for FPSB. However, this argument does not hold true if

 = 1
−1 . Of course, when the financial externalities are direct, the winner’s payment is

entirely distributed among the losers, so that the seller’s revenue in both auctions is zero.

Note that this implies that the expected utility of the bidders is the same for both auctions

because both auctions have an efficient allocation of the object. As bidding is not affected by

whether the financial externalities are direct or indirect, FPSB and SPSB yield equal expected

utility to the bidders in the case of indirect financial externalities. Then it immediately follows

that also for indirect financial externalities, FPSB and SPSB are revenue equivalent.

2.4 Positive Reserve Price

Consider FPSB and SPSB with a reserve price   0. In order to keep the model tractable,

we assume that the independent private values model holds. With some abuse of notation,

15Maasland and Onderstal (2006) show that the revenue equivalence theorem remains valid in our (more

general) setting.
16The revenue comparison is mainly of interest for the case of indirect financial externalities. After all, in

Sections 2.3.1 and 2.3.2, we have shown that in both FPSB and SPSB, the seller cannot gain by guaranteeing

the losing bidders a share of the auction revenue, implying that it is optimal for the seller to set  = 0 (in case

of direct financial externalities).
17Engelbrecht-Wiggans (1994) claims the same result, but his proof is not correct. Engers and McManus

(2007) derive this result in an independent private values model that is a special case of ours.
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we write (t) = () for all , t, where  is a strictly increasing function. An additional

assumption is that all −1 losers receive financial externalities, irrespective of whether or not
they submit a bid in the auction that is larger than or equal to the reserve price.

This section focuses on the existence of equilibria with pooling at the reserve price and of

weakly separating Bayesian Nash equilibria, for which the following definition applies.

Definition 2.1 A weakly separating Bayesian Nash equilibrium is a Bayesian Nash equilib-

rium in which all types below a threshold type abstain from bidding,18 and all types above this

type submit a bid according to a strictly increasing bid function.

This weakly separating Bayesian Nash equilibrium is the equilibrium in the standard setting

without financial externalities. It is interesting to see whether these type of equilibria also exist

in the present model with financial externalities.

2.4.1 First-Price Sealed-Bid Auction

FPSB has a symmetric equilibrium that involves pooling at the reserve price. We assume

that   (1), as otherwise, none of the bidders have an incentive to submit a bid as their

value would not be higher than the reserve price. Proposition 2.5 describes a Bayesian Nash

equilibrium in which bidders with a type below a threshold type  do not bid, types in an

interval [] submit a bid equal to , and bidders with a type  above the threshold type

 bid (), where  is a strictly increasing function, defined as

() ≡ (− 1)−(−1)(1+)(
Z



(−1)+−2() + ()(−1)(1+))

More specifically, let

 = min{1 −1((1 + ))} (2.5)

and  be the unique solution of

¡
()− −1¢ = ()(()−) (2.6)

where

() =
1

 ( − )
( − ) (2.7)

is the probability that a bidder wins given that she bids the reserve price.

For type , the indifference relation (2.5) follows as she is indifferent between bidding 

(and therefore pool with all types in the interval []) and bidding marginally higher than

. These two bids result in a different outcome if , when bidding , loses against another

18This is synonymous to submitting a bid below the reserve price.
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bidder who also bids . A bid just above  gives her utility ()−, while bidding  results
in . If there is no indifference type in the interval [0 1], then  is set equal to 1.

The indifference relation (2.6) for type  is constructed as follows.  is indifferent between

bidding  and abstaining from bidding. The outcome is different in two situations: first, if the

bidder wins against another bidder who bids  (which occurs with probability ()−−1),
and second, if no other bidder bids (which happens with probability −1). Note that () ≥
: a bidder with a value below  will not submit a bid, as by bidding, she wins the object

with a strictly positive probability, which gives a negative utility, while potentially forgoing a

positive pay-off when another bidder submits a bid.

The incentive compatibility constraint for types above  results in the same differential

equation as the bid function for FPSB without reserve price, of which  is the solution

satisfying the boundary condition () = .

Proposition 2.5 Assume independent private values and   (1). Let 
1 ( ), the bid of

a bidder with value , be given by


1 ( ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
() if   

 if  ≤  ≤ 

“ ” if   

where  and  follow from (2.5) and (2.6) respectively. Then 
1 ( ) constitutes a symmetric

Bayesian Nash equilibrium of FPSB if   0.19

To get an intuition why pooling at  occurs in equilibrium, consider a bidder with a value

  . She prefers to win if none of the other bidders submit a bid. However, if someone

does bid, she may wish to lose because the financial externalities are at least , which may

be larger than  −. If  is not much higher than , then the first effect dominates and the

bidder does not bid at all. If  is much higher than , she has a good reason to raise her bid

above  in order to beat some of the other bidders who also submit a bid. However, if she has

an intermediate value, she wants to bid  so that in the absence of a competitor’s bid, she will

win the item, and in the presence of a competitor’s bid she will win with as small probability

as possible. Small increases in the value do not change the fact that the bidder prefers losing

to winning in the presence of a competitor’s bid, which implies that there is pooling at that

price.

In contrast to a situation without financial externalities, there exists no weakly separating

Bayesian Nash equilibrium for FPSB.

19Note that 
1 ( ) is continuous at  This must be the case in equilibrium. Suppose, on the contrary,

that the bid function has a jump at . Then a bidder with a type slightly higher than  has an incentive to

deviate from the bid strategy to a bid just above .
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Proposition 2.6 Assume independent private values. FPSB has no weakly separating Bayesian

Nash equilibrium if   0 and   0.

The proof of Proposition 2.6 is by contradiction. If a weakly separating Bayesian Nash

equilibrium existed, all types exceeding −1() (the type for whom the object is worth )

would submit a bid according to a strictly increasing equilibrium bid function. This function

can be constructed in a similar way as the equilibrium bid function for FPSB without re-

serve price. A contradiction is established, as any strictly increasing equilibrium bid function

requires a bidder with type −1() to submit a bid below the reserve price.

2.4.2 Second-Price Sealed-Bid Auction

The shape of the equilibrium of SPSB when the seller imposes a reserve price   0 depends

on the level of . Let us start by observing that, regardless of , all bidders who submit a

bid above the reserve price do so according to the same bid function as in the absence of a

reserve price. This implies that, in contrast to FPSB, SPSB has a weakly separating Bayesian

Nash equilibrium given that the reserve price is not too high. This observation follows trivially

when the reserve price is smaller than the lowest submitted equilibrium bid, which is strictly

positive according to Proposition 2.2. However, in nontrivial cases weakly separating Bayesian

Nash equilibria also exist. According to Proposition 2.7, for low , types up to a threshold

type b abstain from bidding, and types above b submit the same bid as in the case of no reserve
price.

Proposition 2.7 Assume independent private values. SPSB with reserve price  has a weakly

separating Bayesian Nash equilibrium if and only if  ≤ 2( 
−1()). If such an equilibrium

exists, then it is given by:


2 ( ) =

⎧⎪⎨⎪⎩ 2( ) if  ≥ b
“no bid” if   b

where 
2 ( ) is the bid of a bidder with value . If   2( 0), then b = 0 otherwise b is

the unique solution of

2(b)(1− b) + b((b)−) = (1− b) (2.8)

The threshold type b is indifferent between bidding 2(b) and abstaining from bidding,

and hence follows from equation (2.8). Note that b jumps to a bid strictly above the reserve
price when 2(b)  .

An intuition for the condition  ≤ 2( 
−1()) being necessary is the following. In

a weakly separating Bayesian Nash equilibrium, a bidder with type −1() is always pre-
pared to submit a bid of at least . To see this, observe that for this bidder, in a weakly
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separating Bayesian Nash equilibrium, a bid equal to  yields the same revenue as abstain-

ing from bidding. However, in equilibrium, each type that submits a bid does so according

to the equilibrium bid function for the situation with no reserve price. This implies that if

2( 
−1())  , a bidder with type −1() would submit a bid below the reserve price,

which is not possible, and a contradiction is therefore established.

The condition  ≤ 2( 
−1()) is sufficient for the following reason. As said, in a weakly

separating Bayesian Nash equilibrium, each bidder who submits a bid does so as if there were

no reserve price. Then, for the existence of a weakly separating equilibrium, it remains to be

checked that 2(b) ≥ . If 2( 
−1()) ≥ , then there is a type e ≤ −1() for which

2(e) = . As a reserve price does not affect equilibrium bidding of types that submit a

bid, it follows that if type e would submit a bid in equilibrium, she would submit a bid equal to
. However, type −1() is indifferent between bidding  and not submitting a bid, so that e
prefers not to submit a bid. Therefore, bmust exceed e, so that indeed 2(b) ≥ 2(e) = .

The necessary and sufficient condition  ≤ 2( 
−1()) implies that only for small

, a weakly separating Bayesian Nash equilibrium exists. As said, the existence of such an

equilibrium is trivial in the case of small . However, for large , i.e.,  close to (1),

  2( 
−1()), as, by Proposition 2.2, 2( 1)  (1).

If the condition  ≤ 2( 
−1()) is violated, then there may exist an equilibrium with

pooling at . If max
©
2( 

−1()) 2( 1)
ª
   (1), all types above a threshold 

submit a bid equal to the reserve price. Type  is indifferent between bidding and not bidding

and follows uniquely from a similar condition as in FPSB:


¡
( 1)− −1¢ = ( 1)(()−) (2.9)

Moreover, if   (1), none of the bidders submit a bid in equilibrium, as the value of winning

for none of the bidders exceeds the reserve price.

Proposition 2.8 Assume independent private values. Consider SPSB with reserve price . If

  max
©
2( 

−1()) 2( 1)
ª
, then the following bidding strategies constitute a Bayesian

Nash equilibrium:


2 ( ) =

⎧⎪⎨⎪⎩
 if    ≤ 1

“ ” if  ≤ 

where  = 1 if   (1), and  follows from (2.9) otherwise.

The most involved case is 2( 
−1())   ≤ 2( 1). If this condition holds, then

types below a certain type  abstain from bidding, bidders between types  and  bid the

reserve price, and types    bid 2( ). The threshold types  and  respectively follow
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from the following indifference relations:

(()− −1) = () (()−) (2.10)

(() + ()) = ()2() + () (()−)  (2.11)

where () is the probability that a bidder wins given that she bids the reserve price, ()

is the probability that exactly one bidder has a type above , and () is the probability

that a bidder does not win given that she bids  and that the highest type of the other bidders

does not exceed . More specifically, () is defined in (2.7),

() = (− 1) (1−)−2, and

() = −1 − ()

The indifference relation (2.10) for type  is constructed as follows.  is indifferent between

bidding  and abstaining from bidding. The outcome is different in two situations: first, if the

bidder wins against another bidder who bids  (which occurs with probability ()−−1),
and if no other bidder bids (which happens with probability −1).

For type , the indifference relation (2.11) follows as she is indifferent between bidding

 and submitting a bid 2(). These two bids result in a different outcome under the

following two conditions: first, exactly one bid exceeds , so that  determines the price of

the winner (this event has probability ()), and second, , when bidding , loses against

another bidder who also bids  (probability ()).

Proposition 2.9 Assume independent private values. Consider SPSB with reserve price .

If 2( 
−1())   ≤ 2( 1), the following bidding strategies constitute a Bayesian Nash

equilibrium:


2 ( ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2( ) if   

 if  ≤  ≤ 

“ ” if   

where () is a solution of the system of equations (2.10) and (2.11).

To summarize: SPSB has no less than five types of equilibria if the seller requires a

minimum bid . First, if   2( 0), all bidders submit a bid according to 2( ). Second,

if    (1), no bidder bids. Third, if 2( 1)     (1), all bidders above a threshold

bid exactly the reserve price. For  ∈ (2( 0) 2( 1)), the condition 2( 
−1()) ≥ 

becomes crucial. If this condition holds true, types up to a threshold do not bid, and types

above this threshold submit bids according to 2( ). Otherwise, low types abstain from

bidding, intermediate types pool at , and high types  bid 2( ). All five types of equilibria
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are shown in Table 2.1.

Reserve Price Type of Equilibrium

  2( 0) Separating

 ∈ (2( 0) 2( 1)) and  ≤ 2( 
−1()) Weakly separating

 ∈ (2( 0) 2( 1)) and   2( 
−1()) Pooling at  and high types bid above 

 ∈ (2( 1)  (1)) Only bids at 

   (1) No one bids

Table 2.1: Shape of the equilibrium bid function in SPSB depending on the level of the reserve

price.

2.5 Concluding Remarks

We have studied auctions in which losing bidders obtain financial externalities from the win-

ning bidder. We have derived bidding equilibria for FPSB and SPSB. In FPSB, larger financial

externalities result in a lower expected price; in SPSB, the effect is ambiguous. Although the

expected price in SPSB may increase if financial externalities increase, the seller cannot gain

more revenue by guaranteeing the losing bidders a fraction of the auction revenue. Addi-

tionally, SPSB dominates FPSB in terms of expected auction revenue if   1
−1 and both

auctions are revenue equivalent if  = 1
−1 . Moreover, we have studied equilibrium bidding

for FPSB and SPSB when a reserve price is imposed. We have observed pooling at the reserve

price for FPSB, and for SPSB if the reserve price is sufficiently high. Pooling at the reserve

price may thus arise naturally, and is therefore not something to be suspicious of.

Motivated by the observation that in SPSB, low signal bidders may increase their bids

when  is increased, a model with asymmetries in the valuation function may be fruitful to

study. One may imagine that with one bidder with a low value and another with a high

value, the price in SPSB may be higher with financial externalities than without financial

externalities, as the bidder with the low value has an incentive to push up the price when 

is strictly positive. This indicates that the seller may have an incentive to promise low value

bidders a share of the auction revenue. Indeed, Goeree and Offerman (2004) show that in

asymmetric environments, the seller may obtain more revenue by rewarding one of the losing

bidders a fraction of the auction revenue.

Our study does have practical relevance. First of all, because the model analyzed in this

chapter is isomorphic to a general class of charity auction models, we are able to derive from

our results that charities will raise more money if they use SPSB instead of FPSB. Carpenter

et al. (2008) who run a field experiment found the opposite though. As a potential explanation
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for why their findings deviate from the theory, the authors argue that bidders were unfamiliar

with the rules of SPSB, so that many were reluctant to participate in these auctions.

Second, the insight of our study that, if bidders meet each other in multiple markets,

losers may have an incentive to drive up the price the winner pays now, in order to make him

a less fierce competitor later, may help to explain seemingly irrational bidding in high stake

spectrum auctions. In the British UMTS auction, for example, bidding by British Telecom

(BT) was such that the prices bid for the large (2 x 15 MHz) “B” and small (2 x 10 MHz) “C”,

“D”, and “E” licenses differed by roughly a constant in the early stages of the auction, and

then switched to differing by roughly a fixed proportion (50% of the price level of the small

licenses) in the later stages of the auction (after round 100). This unusual bidding pattern

may be explained by the presence of financial externalities. According to Klemperer (2002),

BT (who might have become confident during the auction that Vodafone valued a large license

at 50% more than a small license) might have placed its bids for license B after round 100

not with the intention of winning the license, but with the intention of raising the price which

Vodafone had to pay.20 The rationale for this strategy is that BT might have believed that

Vodafone had a limited budget for spectrum auctions, and that exhausting Vodafone’s budget

in the British UMTS auction would lead to advantages for BT in subsequent auctions (the

British UMTS auction was the first of nine western European UMTS auctions, and was also

followed by others elsewhere in the world).

Third, the study applies to dissolution of (business) partnerships. Dissolution often requires

a change in property rights, from joint to single ownership, in the hands of one of the partners.

FPSB or SPSB can be run to select the single owner. Our findings tell that FPSB and SPSB

are revenue equivalent if the losers receive an equal share of the auction price as a transfer. If

a professional auctioneer is hired to run the auction and is paid part of the auction price, then

SPSB revenue dominates FPSB. A partner with a high value will consequently prefer FPSB

and one with a low value will prefer SPSB.

2.6 Appendix: Proofs

Throughout the appendix, we let  [1] [ [2]] denote the cumulative distribution function of the

first [second] order statistic of  − 1 draws from the uniform distribution on [0 1], and  [1]

[ [2]] the corresponding density function.

Proof of Proposition 2.1. A higher type of bidder cannot submit a lower bid than a lower

type of the same bidder. (If the low type gets the same expected surplus from strategies with

two different probabilities of being the winner of the object, the high type strictly prefers the

strategy with the highest probability of winning. Therefore, the high type will not submit a

20BT claimed after the auction it indeed had deliberately pushed up the price that Vodafone had paid (see

Cane and Owen, 2000).
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lower bid than the low type.) Also, 1( ) cannot be constant on an interval [
0 00]. (By

bidding slightly higher, a type 00 can largely improve her probability of winning, while only
marginally influencing the payments by her and the other bidders.) Moreover, 1( ) cannot

be discontinuous at any . (Suppose that 1( ) makes a jump from  to  at ∗. A type just
above ∗ has an incentive to deviate to . Doing so, she is able to decrease the auction price,
while just slightly affecting her probability of winning the object. As  is small enough, she

is able to improve her utility.) Hence, a symmetric equilibrium bid function must be strictly

increasing and continuous. Then,

( ) =

Z
0

( ) [1]()−  [1]()1( ) + 

1Z


1( )
[1]()

The first two terms of the RHS of this expression refer to the case that this bidder wins the

object. The third term refers to the case that she does not win. Assume that 1( ) is

differentiable in . Maximizing ( ) with respect to  and equating  to  gives the FOC of

the equilibrium

 [1]()( )−  [1]()1( )−  [1]()
1( )


− 1( )

[1]() = 0

With some manipulation we get

 [1]() [1]()( ) = (1 + )1( )
[1]() [1]() +

1( )


 [1]()1+ (2.12)

or, equivalently,

1 +

Z
0

 [1]() [1]()( ) =  [1]()1+1( )

where 1 is a constant. Substituting  = 0 gives 1 = 0, so that the bid function is given by

1( ) =
1

 [1]()

Z
0

Ã
 [1]()

 [1]()

!

 [1]()( )

= (− 1) −+1−
Z
0

(−1)+−2( ) (2.13)

It is readily checked that the second order condition (
()


) = (−) is fulfilled. Us-

ing integration by parts, (2.13) can be rewritten as (2.3). From (2.12), we infer that
1()


 0

if and only if 1( ) 
()
1+

, which is the case for all   1. Then, by Value Differentiability,

Value Monotonicity, and Symmetry, the efficiency of the auction outcome is established. ¥
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Proof of Proposition 2.2. Following the lines of the proof of Proposition 2.1 it can be

established that a symmetric equilibrium function must be strictly increasing and continuous.

The utility for a bidder with signal  acting as if she had signal  is given by

( ) =

Z
0

(( )−2( ))
[1]() + ()2( ) + 

1Z


2( )
[2]()

where () ≡  [2]()− [1]() denotes the probability that there is exactly one opponent with

a signal larger than . The first term of the RHS refers to the case that this bidder wins, the

second term to the case that she submits the second highest bid, and the third term to her

bid being the third or higher. Assume that 2( ) is differentiable in . The FOC of the

equilibrium is

(( )−2( ))
[1]() + 

()2( )


− 2( )

[2]() = 0

or, equivalently,

( ) [1]() = −2( )


() +2( )[(1 + ) [1]()] (2.14)

The general solution to the above differential equation is equal to

2( )(1− )
1+
 = 2 −

Z
0

(1− )
1
 ( )

where 2 is a constant. Substituting  = 1 yields a unique solution for 2:

2 =

1Z
0

(1− )
1
 ( ).

The only possible differentiable bid function that may constitute a symmetric equilibrium is

given by

2( ) =
1


(1− )

−1− 1


1Z


(1− )
1
 ( ) (2.15)

It is readily checked that the second order condition 
³
()



´
= (− ) holds. Using

integration by parts on 2( ), we see that (2.15) can also be written as (2.4). To complete
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the proof, we must show that 2( ) is indeed increasing in . From (2.15), it follows that

2( ) 

( )
1R


(1− )
1


(1− )
1+


=
( )

1 + 


As (2.14) implies that
2()


 0 if and only if 2( ) 

()
1+

, 2( ) is indeed strictly

increasing in . Then, by Value Differentiability, Value Monotonicity, and Symmetry, it follows

that the outcome of the auction is efficient. ¥

Proof of Proposition 2.3. As stated in the text, it is sufficient to show that the expected

utility 2(0) of the lowest type is increasing in . If  = 2 and if the lowest type is present,

then the price paid is equal to her bid. Therefore,

2(0) = 2( 0) =

1Z
0

(1− )
1
 ( ) (2.16)

which is strictly increasing in . If   2, then the bidder receives financial externalities equal

to  times the second highest bid. Therefore, using the expression for the bid function in

(2.15),

2(0) = 

1Z
0

2( )
[2]()

= (− 1)(− 2)
1Z
0

−3(1− )
− 1


1Z


(1− )
1
 ( ) (2.17)

= (− 1)(− 2)
1Z
0

−3
1Z


µ
1− 

1− 

¶ 1


( )

which is strictly increasing in  as in the inner integral,   . ¥

Proof of Proposition 2.4. (The proof follows the same logic as the proof of Proposition 5 in

Bulow et al. 1999.) Let 1(0) and 2(0) be the equilibrium utility of the lowest type in FPSB

and SPSB respectively. According to Maasland and Onderstal (2006), for SPSB to generate

higher [the same] expected revenue than [as] FPSB, it is sufficient to show that 1(0)  2(0)

[1(0) = 2(0)]. We split the proof in two cases:  = 2 and   2.

We start with the case  = 2. As the outcome of both auctions is efficient, a bidder with

type 0 loses the auction with probability 1, and gets financial externalities as the other bidder

has to pay. For FPSB, the expected price paid by the other bidder is the expectation of her
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bid (2.13). Hence,

1(0) = 

1Z
0

1( )

= 

1Z
0

−1−
Z
0

( )

= 

1Z
0

( )

1Z


−1−

=

1Z
0

( )(1− )

where the third equality is obtained by changing the order of integration. With (2.16), we

infer that

1(0)− 2(0) =

1Z
0

n
1−  − (1− )

1


o
( )

For   1 [ = 1], 1(0)− 2(0)  0 [1(0)− 2(0) = 0], as the expression in curly brackets

has expected value zero, and is strictly negative for all  ∈ (0 ̂) and positive for all  ∈ (̂ 1)
for some ̂ [is zero for all  ∈ [0 1]].

Now, suppose   2. Using the expression for the bid function in (2.13) and 2(0) in

(2.17), we derive that

1(0) = 

1Z
0

1( )
[1]()

= (− 1)2
1Z
0

−1−(−1)
Z
0

(−1)+−2( )

= (− 1)2
1Z
0

(−1)+−2( )

1Z


−1−(−1)

= (− 1)
1Z
0

(−2 − (−1)+−2)( )
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and

2(0) = (− 1)(− 2)
1Z
0

−3(1− )
− 1


1Z


(1− )
1
 ( )

= (− 1)(− 2)
1Z
0

(1− )
1
 ( )

Z
0

−3(1− )
− 1


= (− 1)
1Z
0

⎧⎨⎩(1− )
1


Z
0

(1− )
− 1
−2

⎫⎬⎭ ( )

= (− 1)
1Z
0

⎧⎨⎩−2 − 1

(1− )

1


Z
0

−2(1− )
− 1

−1


⎫⎬⎭ ( )

The difference between 1(0) and 2(0) can be expressed as

1(0)− 2(0)

− 1 =

1Z
0

⎧⎨⎩−(−1)+−2 + 1


(1− )

1


Z
0

−2(1− )
− 1

−1


⎫⎬⎭ ( )

For   1
−1 [ =

1
−1 ], 1(0) − 2(0)  0 [1(0) − 2(0) = 0], as the expression in curly

brackets has zero expected utility, and is strictly negative for all  ∈ (0 ̂) and positive for all
 ∈ (̂ 1) for some ̂ [is zero for all  ∈ [0 1]].

The following observations prove the last statement. Let

(  ) ≡ −(−1)+−2 + 1


(1− )

1


Z
0

−2(1− )
− 1

−1


The expectation of (  ) with respect to  is

1Z
0

(  ) = − 1

(+ 1) (− 1) +
1



1Z
0

−2(1− )
− 1

−1

1Z


(1− )
1
  = 0

Define

() ≡  (1− )
− 1
 (  )

= − (1− )
− 1
 (−1)+−2 +

Z
0

−2(1− )
− 1

−1


Note that (0) = 0, and () is negative for positive  close to 0, as the first [second] term on
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the RHS is of the order (−1)+−2 [−1] and  (− 1) + − 2  − 1. Moreover,

 0() = −[ (− 1) + − 2] (1− )
− 1
 (−1)+−3 + −2

³
1− (−1)

´
(1− )

− 1

−1


Note that lim↑1  0() = +∞, and that for  ∈ (0 1),  0() = 0 implies

 + [ (− 1) + − 2] (1− ) = 1−(−1)

As the function on the LHS is linear, the one on the RHS concave, and the equality holds for

 = 1, there is at most one point  ∈ (0 1) at which  0() = 0. This implies that  is strictly
negative for all  ∈ (0 ̂) and positive for all  ∈ (̂ 1) for some ̂. Consequently, the same
holds true for .

For  = 1
−1 , we prove that ( =

1
−1   ) = 0 for all  ∈ [0 1] by induction to . It is

straightforwardly checked that ( = 1 2 ) = 0. Suppose that ( = 1
−1   ) = 0 for some

 ≥ 2. We now show that this implies that  ¡ = 1

 + 1 

¢
= 0:

(
1


 + 1 ) = − +  (1− )

Z
0

−1(1− )−−1

= − + −1 − (− 1) (1− )
Z
0

−2(1− )−

= − + −1 − (1− )

½
(

1

− 1   ) + −1
¾

= 0

¥

Proof of Proposition 2.5. Assume that threshold types  and  exist such that in equilib-

rium all types    abstain from bidding, all types  ∈ [] bid , and all types    bid

according to a strictly increasing bid function .

() is constructed as follows:

() =

−1X
=0

1

+ 1

µ
− 1


¶
−1− ( − )

=
1

 ( − )

X
=1

µ




¶
− ( − )

=
1

 ( − )
( − ) 
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For type , the indifference relation is

¡
()− −1¢ = ()(()−) =⇒

1− −1

()
=

()−


=⇒

1− 
¡
−1 − 

¢
 − 

=
()−


=⇒

1− − 
¡
−1 −

¢
 − 

=
()−


 (2.18)

 is uniquely determined from (2.18) as the LHS of (2.18) is strictly decreasing in  and the

RHS is strictly increasing in  for  ≥ 0.
A type  is indifferent between bidding  and bidding an infinitesimal  above . These

two bids only yield a different outcome if all other types are lower than . The difference

between bidding  and a bid just above  is that in the former case the bidder always wins

and gains ()−, whereas a bid equal to  may result in utility  if another bidder also

bids . Hence,  is indifferent if and only if () = (1 + ).

To complete the proof, we need to check whether types have no incentive to deviate from

the proposed equilibrium. We only check whether a type    has no incentive to mimic

another type 0  , as by a standard argument, other deviations are not profitable. Incentive

compatibility of types    implies that  is a solution to differential equation (2.12) with

the boundary condition () = . This is indeed how  is constructed.

Finally, we should establish that () is strictly increasing for  ≥ . Analogous to the

proof of Proposition 2.1, this is the case if and only if () 
()
1+

for almost all  ∈ [ 1].

Now,

() = (− 1)−(−1)(1+)
⎧⎨⎩

Z


(−1)+−2() + ()(−1)(1+)

⎫⎬⎭
=

()

1 + 
− −(−1)(1+)

1 + 

Z


(−1)(+1)0()


()

1 + 


¥

Proof of Proposition 2.6. The proof is by contradiction. Suppose that a weakly separating

equilibrium does exist. Then all types above a threshold type ̂ submit a bid according to a

strictly increasing bid function, which we denote by . Then it must be the case that (̂) = 

(a bid strictly below  is not allowed, and it cannot be the case in equilibrium that (̂)  ,
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as ̂ would strictly prefer to deviate to a bid of ). Moreover, type ̂ is indifferent between

bidding  and not bidding, which only makes a difference if no other bidder bids. Therefore,

the indifference relation for ̂ is 0 = (̂)−, or ̂ = −1(). Now, analogous to the proof of
Proposition 2.1, the utility of a type  that wishes to mimic a type   b is given by

( ) =

Z

() [1]()−  [1]()() + 

1Z


() [1]()

The FOC of the equilibrium results in the following differential equation:

 [1]() [1]()() = (1 + )() [1]() [1]() + 0() [1]()1+ (2.19)

Then a necessary condition for  to be strictly increasing (the assumption we started with) is

0() ≥ 0 for all  ≥ ̃. (2.19) implies that this condition is equivalent to () ≤ ()
1+

, so that

it must be true that

(b) ≤ (b)
1 + 

=


1 + 
 

In other words, a weakly separating equilibrium can only exist if type b submits a bid strictly
below . However, this contradicts the fact that all submitted bids should exceed . ¥

Proofs of Propositions 2.7 - 2.9. Suppose that all types  above a threshold type b submit
a bid above  according to a strictly increasing bid function . Analogous to the proof of

Proposition 2.2, the utility of a type  that wishes to mimic a type   b is given by
( ) =

Z

(()− ()) [1]() + ()() + 

1Z


() [2]()

The equilibrium bid function follows from the condition

( )


= 0

at  = . This immediately leads to differential equation (2.14) with the same boundary

condition (1) =
(1)
1+

, so that 
2 ( ) = 2( ) is a solution for all  and  ≥ b.

Now, suppose there is an  for which a weakly separating equilibrium exists. Then there

is an indifference type b such that

2 ( ) =

⎧⎪⎨⎪⎩
2( ) if  ≥ b
“no bid” if   b
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is an equilibrium. b is indifferent between submitting no bid, and submitting a bid equal to
2(b), so that indeed b follows from (2.8). By the intermediate value theorem, (2.8) has a

solution as for b = 0 [b = 1], the LHS is smaller [larger] than the RHS. Moreover, observe that
(2.8) can be rewritten as

2(b) + b
1− b ((b)−) =

(1− b)
1− b  (2.20)

(2.20) has a unique solution as the RHS [LHS] is strictly increasing [decreasing] in b.
A weakly separating equilibrium exists if and only if 2(b) ≥ , because all bids should

be above. We will now show that2(b) ≥  is equivalent to the condition2( 
−1()) ≥

. Define e such that 2(e) = . As 2( ) is strictly increasing in , e is uniquely
determined. Consider the function  with

() ≡ 2( ) +
(()−)

1− 

for all . Note that  is a strictly increasing function, with (b) =  (which follows from

(2.8)), and

(e) = +
e((e)−)

1− e 

Now, as 2( ), (), and () are strictly increasing in ,

2(b) ≥  = 2(e)⇐⇒ b ≥ e⇐⇒ (b) ≥ (e)⇐⇒  ≥ (e)
⇐⇒ −1() ≥ e⇐⇒ 2( 

−1()) ≥ 2(e) = 

Finally, if 2( 
−1())   , the pooling equilibrium is straightforwardly established.

What remains to be checked is whether the system of equations (2.10) and (2.11) has a solution.

First, we fix  ≥ −1(), so that  is a solution of

Φ() ≡ (()− −1)− () (()−) = 0 (2.21)

Note that Φ is strictly decreasing. Moreover, Φ(0)  0 and Φ()  0, so that (2.21) has a

unique solution () ∈ (0). By the implicit function theorem, () is continuous.

Now, we check that the following equation has a solution  ≥ −1():

Ψ() ≡ [() + (() )]− ()2( )− (() ) (()−) = 0

Observe that (−1()) = −1(), so that Ψ(−1())  0 (as () = 0 for all , and

2( 
−1())  −1()). Furthermore, let ̃ ≡ −1((1 + )). Note that ̃ ∈ (−1() 1)



2.7 References 83

and 2( ̃) ≥ 1
1+

(̃) = .21 Then, Ψ(̃) = (̃)( − 2( ̃)) ≤ 0. Hence, by the

intermediate value theorem, there is a  ∈ [−1() ̃] for which Ψ() = 0.22 ¥
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Chapter 3

How (Not) to Raise Money

3.1 Introduction

It is well known that mechanisms used to finance public goods may yield disappointing revenues

because they suffer from a free-rider problem. For example, simply asking for voluntary

contributions generally results in underprovision of the public good (e.g. Bergstrom et al.,

1986). From a theoretical viewpoint, Groves and Ledyard (1977) solved the decentralized

public-goods provision problem by identifying an optimal tax mechanism that overcomes the

free-rider problem. This mechanism, however, is mainly of theoretical interest. In contrast,

lotteries and auctions are frequently employed as practical means to raise money for a public

good. Even the voluntary contribution method is commonly observed in practice, despite its

inferior theoretical properties. The co-existence of these alternative formats raises the obvious

question: “which method is superior at raising money?”

Morgan’s (2000) work constitutes an important first step in answering this question. He

studies the fund-raising properties of lotteries and makes the point that the public-good free-

rider problem is mitigated by the negative externality present in lotteries. This negative

externality occurs because an increase in the number of lottery tickets that one person buys

lowers others’ chances. As a result, lotteries have a net positive effect on the amount of money

raised vis-à-vis voluntary contributions. A similar negative externality emerges in auctions,

where a bidder’s probability of winning is negatively affected by more aggressive bidding

behavior of others.

A priori, most economists would probably expect that auctions are superior to lotteries

in terms of raising money. Unlike lotteries, auctions are efficient; in equilibrium, the bidder

with the highest value for the object places the highest bid and wins. This efficiency property

promotes aggressive bidding and boosts revenue, suggesting that lotteries are suboptimal.

However, fund-raisers that use lotteries, or “raffles,” are quite prevalent, which casts doubt on

the empirical validity of this conclusion.

The flaw in the above argument stems from a separate problem that emerges in auctions

85



86 How (Not) to Raise Money

where only the winner pays. When a bidder tops the highest bid of others, she wins the

object but concurrently eliminates the benefit she would have derived from free-riding off

that (previously highest) bid. The possible elimination of positive externalities associated

with others’ high bids exerts downward pressure on equilibrium bids in winner-pay auctions.

Notice that this feature does not occur in lotteries where all non-winning tickets are paid.

In this paper we determine the extent to which bids are suppressed in winner-pay auctions

and find that these formats yield dramatically low revenues. Even when bidders value $1 given

to the public good the same as $1 for themselves, revenues are finite. In contrast, lotteries

generate infinite revenue in this case, notwithstanding their inefficiency. Though extreme, this

example suggests that it may make sense to use lotteries instead of winner-pay auctions to

raise money.

The main virtue of lotteries in the above example, i.e. that all tickets are paid, can be

incorporated into an efficient mechanism. “All-pay” auctions, where everyone pays irrespective

of whether they win or lose, avoid the problems inherent in winner-pay auctions. Since they are

also efficient, they are prime candidates for superior fund-raising mechanisms. In this paper,

we prove this intuition correct. We introduce a general class of all-pay auctions, rank their

revenues, and illustrate the extent to which they dominate winner-pay auctions and lotteries.

Furthermore, we show that the optimal fund-raising mechanism is among the all-pay formats

we consider.

Adding an all-pay element to fund-raisers seems very natural. Indeed, the popularity

of lotteries as means to finance public goods indicates that people are willing to accept the

obligation to pay even though they may lose. Presumably, the costs of losing the lottery are

softened because they benefit a good cause. In some cases, it may even be awkward to not

collect all bids. Suppose, for instance, that a group of parents submit sealed bids for a set

of prizes that are auctioned, knowing that the proceeds benefit their children’s school. Some

parents may be offended when told they contributed nothing because they lost the auction,

or, in other words, because their contributions were not high enough.

This paper is organized as follows. In the next section, we consider winner-pay auc-

tions where bidders derive utility from the revenue they generate. We build on the work of

Engelbrecht-Wiggans (1994), who studies such auctions for the two-bidder case. We extend

his finding that second-price auctions revenue dominate first-price auctions by showing that

both auctions may be dominated by a third-price auction. The main point of Section 3.2,

however, is punctuated by a novel revenue equivalence result for the case when people are

indifferent between a dollar donated and a dollar kept. We show that the amount of money

generated in this case is identical for all winner-pay formats and surprisingly low.

In Section 3.3 we introduce a general class of all-pay auctions. We show how these formats

avoid the shortcomings of winner-pay auctions and we rank their revenues.1 We demonstrate

1A related paper is that of Krishna and Morgan (1997) who study first-price and second-price all-pay

auctions. They show that when bidders’ values are affiliated, revenue equivalence does not hold. Baye et al.
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that an increase in the number of bidders may decrease revenues as low bids more and more

resemble voluntary contributions. Fund-raisers can therefore benefit from limiting the number

of contestants. In Section 3.4 we derive the optimal fund-raising mechanism, which involves

both an entry fee and a reserve price.

Our work is related to several papers that consider auctions in which losing bidders gain by

driving up the winner’s price. In takeover situations, for example, losing bidders who own some

of the target’s shares (“toeholds”) receive payoffs proportional to the sales price (e.g. Singh,

1998; Bulow et al., 1999). A related topic is the dissolution of a partnership, as analyzed by

Cramton et al. (1987). Graham and Marshall (1987) and McAfee and McMillan (1992) study

“knockout auctions” where every member of a bidding ring receives a payment proportional to

the winning bid. Other examples include creditors bidding in bankruptcy auctions (Burkart,

1995) and heirs bidding for a family estate (Engelbrecht-Wiggans, 1994). These papers restrict

attention to standard winner-pay auctions, i.e. first-price, second-price, and English auctions.

Another important difference is our assumption of a public-good setting: one bidder’s benefit

from the auction’s revenue does not diminish its value to others.

The paper most closely related to ours is Engers and McManus (2007), who consider “char-

ity auctions.”2 They consider first-price and second-price auctions and extend Engelbrecht-

Wiggans’s (1994) ranking to the -bidder case. Our results, however, demonstrate that (i)

there exist other winner-pay formats that revenue-dominate the second-price auction, and (ii)

all winner-pay formats are poor fund-raisers. Engers and McManus (2007) find that a first-

price all-pay auction yields a higher revenue than a first-price auction, but that its revenue

may be more or less than that of a second-price auction. Our paper provides a framework to

explain these results and gives a more general ranking of all-pay revenues. In addition, we

prove that the lowest-price all-pay auction augmented with an entry fee and reserve price is

the optimal fund-raising mechanism.

Finally, our work is related to that of Jehiel et al. (1996) who consider auctions in which

the winning bidder imposes an individual-specific negative externality on the losers. One

important difference is that the magnitudes of the externalities that occur in fund-raisers are

endogenously determined, whereas those considered by Jehiel et al. (1996) are fixed.

3.2 Winner-Pay Auctions

In this section we consider “standard” auctions in which only the winner has to pay. We start

with a simple three-bidder example to illustrate and extend previous results in the literature

and, more importantly, to demonstrate that winner-pay auctions are poor at raising money.

We underscore our point by proving a novel revenue equivalence result: when bidders value $1

(1998, 2005) also study these all-pay formats with affiliated values and consider their applications in a wide

variety of two-person contests, including patent races, lobbying, and litigation.
2See Ledyard (1978) for an early evaluation of the use of auctions to raise money for a public good.
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given to the public good the same as $1 for themselves, the revenue generated is identical for

all winner-pay auctions. Most importantly, however, revenue in this case is only the expected

value of the highest order statistic.

Consider three bidders who compete for a single indivisible object. Suppose bidders’ values

are independently and uniformly distributed on [0 1] and the auction’s proceeds accrue to a

public good that benefits the bidders. We assume a particularly simple linear “production

technology” where every bidder receives $ from $1 spent on the public good. Hence, bidders

in the auction receive  in addition to their usual payoffs, where  is the auction’s revenue.

Engelbrecht-Wiggans (1994) first studied auctions where bidders benefit from the auction’s

revenue. He derived the optimal bids for the first-price and second-price auctions when there

are two bidders. His answers, however, can easily be extrapolated to our three-bidder example.

In the first-price auction, equilibrium bids are3

13() =
2

3− 
 (3.1)

where the first subscript indicates the auction format and the second the number of bidders.

Similarly, equilibrium bids in the second-price auction are

23() =
 + 

1 + 
 (3.2)

Since the bidding functions are linear, revenues follow by evaluating (3.1) and (3.2) at the

expected value of the highest and second-highest of three draws: 13 = 3(6 − 2) and
23 = (1+2)(2+2). Note that 13 = 23 = 12 when  = 0, which is the usual revenue

equivalence result, and 13 = 23 = 34 when  = 1. For intermediate values of  we have

23  13, a result first shown by Engelbrecht-Wiggans (1994) for the case of two bidders.

This suggests that the second-price auction should be preferred for fund-raising. The result

is of limited interest, however, as it is easy to find other formats that revenue dominate the

second-price auction. Consider, for instance, a third-price auction in which the winner has to

pay the third-highest price. Equilibrium bids for this format are given by

33() =
2( − )

1− 
+



2(1− )

³
1 +

p
1 + 8

´
(1− )

1
2
(
√
1+8− 1) (3.3)

with corresponding revenue

33 =
1− + 32

³
3−

p
1 + 8

´
2(1− )(1− 3)  (3.4)

3Consider a bidder with value  who bids as if he has value  and faces rivals who bid according to 13(·).
The expected payoff is: (13()|) = [ − (1− )13()]

2 + 
 1

13()

2. It is easy to verify that

the first-order condition for profit maximization is: 
(13()|) = 2( −), so it is optimal for a bidder

with value  to bid 13().
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Also the third-price auction yields revenue 1/2 when  = 0 as dictated by the Revenue

Equivalence Theorem, and 3/4 when  = 1. For intermediate values of , the third-price

auction results in higher revenues than the other two formats, as shown in Figure 3.1.

0.2 0.4 0.6 0.8 1
alpha

0.5

0.55

0.6

0.65

0.7

0.75
Revenue

Figure 3.1: Revenues from a first-price (short dashes), second-price (long dashes), and third-

price (solid line) auction with three bidders for 0 ≤  ≤ 1

The revenue equivalence result for  = 1 holds quite generally. Consider a setting with

 bidders whose values are identically and independently distributed on [0 1] according to

a distribution  (·).4 To derive the amount of money raised when  = 1, we focus on the

first-price auction, for which it is a weakly dominant strategy to bid one’s value. To verify

this claim, consider bidder 1 and let −1 = max=2{} denote the highest of the others’
bids. When 1 ≥ −1, bidder 1’s expected payoff when she bids her value is 1, and she gets
the same payoff for all bids with which she wins. When she bids too low and loses the auction,

however, her expected payoff becomes −1  1. In other words, bidder 1 never gains but

may lose when choosing a bid different from her value. Similarly, when 1  −1, bidder 1’s
expected payoff when she bids her value is −1. This payoff is the same for all bids with which
she loses, but a bid that would lead her to win the auction yields a lower expected payoff equal

to 1. So it is optimal to bid one’s value and the auction’s revenue is simply the expected

value of the highest order statistic. We next show that other winner-pay formats yield the

same revenue (see the appendix for a proof). Let  
 denote the -highest order statistic

from  value draws.

Proposition 3.1 The revenue of any winner-pay auction is ( 
2 ) for  = 0 and (


1 ) for

 = 1.

This revenue equivalence result is somewhat interesting in its own right, but the main point

4Throughout this paper we assume that the corresponding probability density function (·) is positive and
continuous.
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is that winner-pay auctions are ineffective at raising money. Revenues are increasing with 

(see Figure 3.1), so the highest revenue should be expected for  = 1. In this extreme case

bidders are indifferent between keeping $1 for themselves or giving it to the public good, yet

revenues are only ( 
1 ) in a winner-pay auction. We show below that bidders would spend

their entire budgets if a lottery or all-pay auction were used.

3.3 All-Pay Auctions

The problem with winner-pay auctions is one of opportunity costs. A high bid by one bidder

imposes a positive externality on all others, who forgo this positive externality if they top

the high bid. Bids are suppressed as a result, and so are revenues. This would not occur in

situations where every bidder pays, regardless of whether they win or lose.5 In this section,

we introduce -price all-pay auctions where the highest bidder wins, the − lowest bidders
pay their bids, and the  highest bidders pay the -highest bid.

To derive the bidding functions, consider the marginal benefits and costs of raising one’s

bid. The positive effects of increasing one’s bid from () to ( + ) ≈ () + 0() are
twofold. First, it might lead one to win the auction that otherwise would have been lost. This

occurs when the highest of the others’ values falls between  and  + , which happens with

probability (− 1)() ()−2. Second, an increase in one’s bid raises revenue by 0() if
there are at least −1 higher bids and by an additional (−1)0() if there are exactly −1
higher bids. Let  −1

−1
denote the distribution function of the (−1) order statistic from −1

draws with the convention  −1
0

() = 0 and  −1


() = 1. The probability that there are at

least  − 1 bidders with values higher than  is 1− 
 −1
−1

(). Similarly, the probability that

there are exactly −1 such bidders is (1−
 −1
−1

())−(1−
 −1


()) = 
 −1


()−
 −1
−1

().

Combining the different terms, the expected marginal benefit can be written as  times

(− 1) () ()−2 + 0(){(1−  −1
−1

()) + ( − 1)( −1


()−  −1
−1

())} (3.5)

Likewise, the marginal cost is 0() when there are at least −1 higher bids, and the expected
marginal cost is therefore  times

0()(1−  −1
−1

()) (3.6)

5Morgan (2000) considers lotteries as ways to fund public goods. Lotteries have an “all-pay” element in that

losing tickets are not reimbursed. A major difference is that lotteries are not, in general, efficient, i.e. they do not

necessarily assign the object for sale to the bidder that values it the most. Indeed, even in symmetric complete

information environments where efficiency plays no role, lotteries tend to generate less revenues because the

highest bidder is not necessarily the winner. To see this, suppose the prize is worth  to all bidders. In a lottery

the optimal number of tickets to buy is (−1)(2(1−)), resulting in a revenue of (−1)((1−)). In the
first-price all-pay auction, the symmetric Nash equilibrium is in mixed-strategies. The equilibrium distribution

of bids is  () = (((1−) ))1(−1), and the resulting revenue is (1−), which exceeds that of a lottery

for all . Note, however, that the revenue of a lottery may exceed that of a first-price winner-pay auction, for

instance, where the unique symmetric equilibrium entails bidding  , and hence revenue is  , for all  ≤ 1.
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The optimal bids can be derived by equating benefits to costs. The resulting differential

equation has a well-defined solution for   1. This case is studied in the next proposition,

which also compares the resulting revenues to that of a lottery ( ).

Proposition 3.2 When   1, the equilibrium bids of the -price all-pay auction are


 () =

Z
0

(− 1) () ()−2
(1− )(1−  −1

−1
()) + ( − 1)(1−  −1


())

 (3.7)

and revenues are


 =

1Z
0

 (1−  −1
−1

())

(1− )(1−  −1
−1

()) + ( − 1)(1−  −1


())
 

2
() (3.8)

Revenues of the -price all-pay auction are increasing in  but may decrease with , and

  
−1  

 for 2 ≤  ≤  and   0.

Thus, the all-pay formats revenue dominate the lottery and, most importantly, the lowest-

price all-pay auction revenue dominates all other all-pay formats. Not surprisingly, it also

revenue dominates all winner-pay auctions. This latter result, which we prove in the next

section, is foreshadowed by Figure 3.2. This figure shows the revenues of a first-price, second-

price, and third-price all-pay auction when there are three bidders whose values are uniformly

distributed. Comparing Figures 3.1 and 3.2 illustrates clearly the extent to which revenues

are suppressed in winner-pay auctions.
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Figure 3.2: Revenues from a first-price (short dashes), second-price (long dashes), and third-

price (solid line) all-pay auction with three bidders for 0 ≤  ≤ 1
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Unlike winner-pay formats where revenues are increasing in both  and ,6 all-pay formats

may yield lower revenues when there are more bidders. The intuition behind this result can

be made clear by considering the second-price all-pay auction. With two bidders, the loser

knows that her bid determines the price paid by the winner, which provides the loser with an

incentive to drive up the price. This is not true with three or more bidders, however, in which

case the −2 lowest bids are paid only by the losers. Hence there are no positive externalities
associated with such bids, which become like voluntary contributions to the public good. This

suppresses bids of low-value bidders, who free-ride on the revenues generated by the bidders

with higher values. Fund-raisers may thus benefit from limiting competition and restricting

access to “a happy few.”

When   1 the equilibrium bidding function in (3.7) breaks down and revenues diverge.

This divergence is, of course, a consequence of our assumption of a linear production technology

for the public good. If the marginal benefit of the public good is sufficiently decreasing (instead

of being constant), revenues are finite. We keep the constant marginal benefit assumption

because it provides a tractable model to show how much worse winner-pay auctions are in

terms of raising money compared to all-pay formats.

To deal with the case   1, we assume that bidders have a finite budget  , where 

is much larger than 1. Recall from Proposition 3.1 that revenues of winner-pay auctions are

bounded above by 1 whenever  ≤ 1, and they are bounded by  when   1 since only a

single bidder pays. In contrast, we next show that the lowest-price all-pay auction raises the

maximum amount  when   1.

Proposition 3.3 When   1 and bidders face a budget constraint  , the equilibrium bids

of the -price all-pay auction are7


 () =

⎧⎪⎪⎨⎪⎪⎩

 () for   ∗

 for  ≥ ∗
(3.9)

with 
 () given by (3.7). The cut-point, 

∗, satisfies 0  ∗  1 when    and 1 

  1, in which case   
1   and 

  
 =  . When  ≥ 1, ∗ = 0 and

 = 
 =  for all .

In particular, when bidders value $1 for the public good the same as $1 kept, revenues

6Equilibrium bids are 1() =
 
0
 

 (|), where 
 (|) ≡ ( () ())

−1
1− , for the first-price auction.

Note that 
 first-order stochastically dominates 


0 for all  ≥ 0, and 

 first-order stochastically dominates

0
 for all  ≥ 0. Hence an increase in  or  raises bids and revenues. Equilibrium bids for the second-

price auction are 2() =
 1

 (|), where (|) ≡ 1 − ( 1− ()

1− () )
1
 , independent of .  first-order

stochastically dominates 0 for all  ≥ 0, and an increase in  results in higher bids and higher revenues.

Bids in the second-price auction are independent of the number of bidders, but the expected value of the

second-highest order statistic increases with  and, hence, so does revenue.
7See Gavious et al. (2002) for a similar analysis and results.
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of a lottery or any of the all-pay auctions are equal to the sum of the bidders’ budgets,  .

This maximum possible revenue contrasts with the expected revenue of a winner-pay auction,

( 
1 )  1, see Proposition 3.1. When   1 and   , bidders with sufficiently small

values continue to bid according to (3.7) in the -price all-pay auction because the value

from possibly winning the item is too small to justify the increased cost of a jump to  .

Revenues are strictly smaller than  in this case unless the lowest-price auction is used for

which this maximum amount is guaranteed whenever   1.

3.4 Optimal Fund-Raising Mechanisms

In the previous section we showed that when   1, the lowest-price all-pay auction raises

the maximum possible revenue. Here we prove that the lowest-price all-pay auction is the

optimal fund-raising mechanism for   1 and, hence, is optimal generally. Consider first

the case where the seller cannot commit to keeping the good, so that he cannot use an entry

fee or a reserve price. Note that this assumption is closely related to the assumption in the

Coase Conjecture that a seller of a durable good cannot commit to selling the good for the

monopoly price (Coase, 1972).

Proposition 3.4 When the seller cannot commit to keeping the good, the lowest-price all-pay

auction is revenue maximizing. The total amount raised is increasing in .

The intuition for this result is as follows. The total surplus generated by the auction is

maximized when the auction outcome is efficient. This surplus is divided between the bidders

and the seller: the bidders’ share is minimized, and, hence, revenues are maximized, when the

lowest-value bidder has zero expected payoffs (see the proof in the appendix). The lowest-

price all-pay auction maximizes total surplus because it assigns the object to the highest-value

bidder. In addition, the zero-value bidder who loses for sure also determines the price paid

in the auction. Hence, the zero-value bidder’s expected payoff is 
(0), which is zero by

(3.7) for all   1.8

For the standard case without a public good ( = 0), it is well known that the seller can

obtain higher revenues by screening out low-value bidders. Myerson (1981) and Riley and

Samuelson (1981) prove that it is revenue maximizing to screen out all bidders with values

less than the cut-off value, b, that satisfies9
b − 1−  (b)

(b) = 0 (3.10)

8 Indeed, a strictly positive bid by the zero-value bidder implies that the expected lowest bid is strictly

positive, and since the zero-value bidder’s expected profit is  − 1  0 times the expected lowest bid, she is

better off bidding zero.
9We make the common assumption that the marginal revenue () ≡  − (1 −  ())() is strictly

increasing in , see Myerson (1981). Under this assumption there is a unique solution to (3.10).
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Screening can be implemented, for instance, by imposing a “minimum bid” or reserve price.

By using a reserve price, the seller lowers the expected payoffs of bidders with values between

0 and b to zero, thus capturing part of the bidders’ rents.
When   0, however, the optimal mechanism cannot be implemented with a reserve price

only since low-value bidders that abstain from bidding would still get utility from the amount

raised for the public good. Consider instead the following two-stage auction mechanism,

Γ( ), that involves both a reserve price, , and an entry fee, . In the first stage, bidders

are asked whether or not they want to participate. If at least one of the bidders refuses to

participate, the game ends and the seller keeps the object. Otherwise, each bidder pays the

seller the entry fee . Then bidders enter the second stage and play the lowest-price all-pay

auction with reserve price . In this auction, each bidder either submits a bid of at least 

or abstains from bidding. If all bidders abstain, the object remains in the hands of the seller;

otherwise it will be sold to the bidder with the highest bid. All bidders who submitted a bid

pay the auction price, which equals the lowest submitted bid when all bidders submitted a bid

and equals  otherwise.

The equilibrium strategy for the lowest-price all-pay auction in the presence of a reserve

price  changes as follows:

() ≡

⎧⎪⎪⎨⎪⎪⎩
( b) for  ≥ b
“no bid” for   b (3.11)

where

( b) ≡  +
− 1
1− 

Z


() ()−2

1−  ()−1
 (3.12)

the threshold b satisfies (3.10) and  is the unique solution to b (b)−1 = (1− ).10 Note

that (3.12) has a similar structure to the solution derived in Proposition 3.2 for  = . The

reason is that for bidders with values   b, the optimal bids again follow by equating the
expected marginal benefits and costs in (3.5) and (3.6) respectively. The only difference is

that the boundary condition is now given by (b) =  instead of (0) = 0.

Proposition 3.5 The optimal fund-raising mechanism is given by the two-stage mechanism

Γ( ), in which bidders first decide whether or not to pay an entry fee  and then compete

in a lowest-price all-pay auction with reserve price , where

(1− )  = b (b)−1
(1− ) = (− 1)(1−  (b))

10The reserve price  can be derived by noting that, in equilibrium, a bidder with value  must be indifferent
between abstaining and bidding . Hence (− 1)(1− ()) = −+ {1 + (− 1)(1−  ())}+  ()−1,
where (− 1)(1−  ()) is the expected number of other bidders that submit a bid in excess of .
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and b satisfies (3.10). In equilibrium, all bidders participate and play according to (3.11). The
total amount raised is increasing in .

In practice, fund-raising events frequently employ structures with some of the character-

istics of Γ. Under one common structure, attendees are charged a fee for dinner and drinks,

then are allowed to bid in auctions later in the event. However, these fund-raisers usually

use winner-pay auctions and thus do not maximize revenue. Indeed, an easy corollary to

Proposition 3.5 is that the formats most commonly employed in practice are non-optimal.

Corollary 3.1 Lotteries and winner-pay auctions (with or without reserve prices) are non-

optimal.

The intuition is that a lottery does not maximize revenues because the expected payoff

of the lowest-value bidder is strictly positive, and the object is not allocated to the bidder

with the highest value. A winner-pay auction does not maximize revenues as the lowest-value

bidder expects strictly positive utility from the winner’s payment.

3.5 Conclusion

Large voluntary contributions such as the recent $24 billion committed by Bill Gates to the

Bill and Melinda Gates Foundation, make up a substantial part of total fund-raising revenue

today.11 Not surprisingly, such gifts garner significant attention in the popular media.12 The

vast majority of fund-raising organizations, however, seek small contributions from a large

number of donors. These organizations frequently prefer lotteries and auctions over the solic-

itation of voluntary contributions.13

Moreover, as electronic commerce on the Internet has grown, web sites offering charity

auctions have proliferated. Electronic auction leaders such as Ebay and Yahoo! have specific

sites for charity auctions where dozens of items are sold each day. The established fund-raising

community has taken notice of these developments. In a recent report for the W.K. Kellogg

Foundation, Reis and Clohesy (2000) identified auctions as one of the most important, and

fastest growing, options that fund-raisers use to leverage the power of the Internet. Given

these trends, it is clear that professional fund-raisers can profit from an improved auction

design.

Currently, most fund-raisers employ standard auctions where only the winner pays. These

familiar formats have long been applied in the sales of a variety of goods, and their revenue-

generating virtues are well established, both in theory and practice (e.g. Klemperer, 1999).

11Total giving was an estimated $190 billion in 1999, according to Giving USA.
12 “Bill’s Biggest Bet Yet,” Newsweek, February 4, 2002, p. 46.
13For example, in the year 2000, Ducks Unlimited raised a total of $75 million from special events organized

by its 3,300 local chapters, with over 50% of the revenue coming from auctions.
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We show, however, that they are ill suited for fund-raising. The problem with winner-pay

auctions in this context is one of opportunity costs. A high bid by one bidder imposes a

positive externality on all others, which they forgo if they top the high bid. Bids are suppressed

as a result, and so are revenues. We show that the amount raised by winner-pay auctions is

surprisingly low even when people are indifferent between a dollar donated and a dollar kept.

The elimination of positive externalities associated with others’ bids does not occur when

bidders have to pay irrespective of whether they win or lose. Many fund-raisers employ

lotteries, for example, where losing tickets are not reimbursed (see Morgan, 2000). Lotteries

are generally not efficient, however, which negatively affects revenues. We introduce a novel

class of all-pay auctions, which are efficient while avoiding the shortcomings of winner-pay

formats. We rank the different all-pay formats and demonstrate their superiority in terms

of raising money (see Figures 3.1 and 3.2). We prove that the lowest-price all-pay auction

augmented with a reserve price and an entry fee is the optimal fund-raising mechanism.

Our findings are not just of theoretical interest. The frequent use of lotteries as fund-raisers

indicates that people are willing to accept an obligation to pay even though they may lose. The

all-pay formats studied here may be characterized as incorporating “voluntary contributions”

into an efficient mechanism. They are easy to implement and may revolutionize the way in

which money is raised.

At the end of this chapter, we want to stress the limitations of this paper. First, the

reader should be aware that this is a theory paper. Theory should be augmented with em-

pirical analysis (of experimental data, or field data) before policy recommendations can be

advocated. Quite recently, the theory proposed in this chapter has been tested in a laboratory

experiment and some field experiments. Onderstal and Schram (2009) ran a laboratory ex-

periment that was a straightforward implementation of our theory and found support for the

theorical predictions. In a comparison of first-price winner-pay auctions, first-price all-pay auc-

tions and lotteries, they found that the all-pay format raises substantially higher revenue than

the other mechanisms. Carpenter et al. (2008) who ran a field experiment (during fundraising

festivals organized by preschools in Addison County) found, in contrast, that the first-price

winner-pay auction outperforms the first-price all-pay auction.14 These authors attribute this

result to differences in the participation rates across the mechanisms. Many people seemed

to be reluctant to participate in the all-pay auction because of the unfamiliarity with the

auction rules. A similar finding was obtained in a door-to-door fundraising field experiment

in the Netherlands by Onderstal et al. (2011). New experiments, both in the lab and in the

field, should reveal under which circumstances the all-pay auction is the preferred fundraising

mechanism.

Second, the reader should note that the lowest-price all-pay auction has, apart from the

efficient equilibrium, highly inefficient equilibria in the case of two bidders. It is easily verified

14 In contrast to theory, they also found that the first-price winner-pay auction revenue dominates the second-

price winner-pay auction.
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that there is an equilibrium in which one bidder submits a very high bid, and the other bids

zero.15 In addition, the lowest-price all-pay auction is prone to ‘shill bidding’, i.e., a bidder

has an incentive to hire someone to bid zero in the auction while she submits a very high bid.

Doing so, she wins the object for a price of zero. Orzen (2008) has tested the lowest-price

all-pay auction in the lab. He observes that the lowest-price all-pay auction is a better fund-

raising mechanism than the first-price all-pay auction, a lottery, and a voluntary contribution

mechanism. Orzen’s experimental results are thus in line with our theoretical results. It should

in fairness be said however, that Orzen considers a situation where   1, in which shill

bidding is not attractive.

3.6 Appendix: Proofs

Proof of Proposition 3.1. Consider a standard auction format in which the highest bidder

wins and only the winner pays. In an efficient auction, the surplus generated is  = ( 
1 ) +

, with  the auction’s revenue. This surplus is divided between the seller and the bidders:

 = +, where  denotes the ex ante expected payoffs for the group of bidders.

Solving for  we derive

 =
( 

1 )− 

1− 
 (3.13)

The revenue equivalence result for  = 0 is standard. When  = 1, the winning bidder’s net

payment is zero. A bidder with a value of 1, who wins for sure, therefore has an expected

payoff of 1. A simple Envelope Theorem argument shows that the expected rents for a bidder

with value  are given by

() = (0) +

Z
0

−1() 

(see also Lemma 3.1 in the proofs of Propositions 3.4 and 3.5) from which we derive

(0) = 1−
1Z
0

 ()−1 

= (− 1)
1Z
0

 () ()−2 

= (− 1)
1Z
0

 ()
©
 ()−1 +  ()−2(1−  ())

ª


=
1


[(− 1)( 

1 ) +( 
2 )] 

15For three or more bidders, there is no equilibrium in which one bidder bids very high and the other bidders

bid zero, because in such an equilibrium one of the low bidders has an incentive to overbid the high bidder.
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Moreover  = 
1R
0

()  (), so:

 = (0) + 

1Z
0

Z
0

 ()−1   ()

= (0) + 

1Z
0

1Z


 () ()−1

= (0) +( 
1 )−( 

2 )

= ( 
1 )

From the last line and (3.13) we derive

 =
( 

1 )− ( 
1 )

1− 
= ( 

1 )

which completes the proof. ¥

Proof of Proposition 3.2. Let (·) denote the bidding function given in (3.7). Since the
denominator in (3.7) is bounded away from 0 for all   1 when   1, the bidding function

is well defined for all   1 and possibly diverges in the limit  → 1. The derivative of the

expected profit of a bidder with value  who bids as if of type  and who faces rivals bidding

according to (·) is


(()|) = (− 1)() ()−2 − (1− )0()(1−  −1

−1
())

+( − 1)0()( −1


()−  −1
−1

())

Using the expression for (·) given by (3.7), the marginal expected profits can be rewritten as


(()|) = (− 1)( −)() ()−2

and it is therefore optimal for a bidder with value  to bid (). The revenue of the -price

all-pay auction equals

 =

X
= +1

1Z
0

()  

() + 

1Z
0

()  

()

= 

1Z
0

() ()
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where

() ≡ 1



X
= +1

 

() +




 


()

Note that (·) is increasing with (0) = 0 and (1) = 1. Using 1


P
=1

 

=  , the

distribution (·) can be rewritten as

() =  () +
1



−1X
=1

( 

()−  


())

=  () +
1



−1X
=1

⎧⎨⎩
X

=+1−

µ




¶
 ()(1−  ())− −

X
=+1−

µ




¶
 ()(1−  ())−

⎫⎬⎭
=  () +

1



−1X
=1

−X
=+1−

µ




¶
 ()(1−  ())−

=  () +
1



−1X
=+1−

−X
=1

µ




¶
 ()(1−  ())−

=  () + (1−  ()) −1
−1

()

where we used some basic properties of order statistics.16 The revenue of the -price all-pay

auction thus becomes

 = 

1Z
0

Z
0

(− 1) () ()−2
(1− )(1−  −1

−1
()) + ( − 1)(1−  −1


())

 ()

= 

1Z
0

⎡⎣ 1Z


()

⎤⎦ (− 1) () ()−2
(1− )(1−  −1

−1
()) + ( − 1)(1−  −1


())



=

1Z
0

 (1−  −1
−1

())

(1− )(1−  −1
−1

()) + ( − 1)(1−  −1


())
 

2
()

where we used (1)−() = (1−  ())(1−  −1
−1

()).

The derivative of (3.8) with respect to  is the integral of a strictly positive function times

(1−  −1
−1

())− ( − 1)(1−  −1


())

= (1−  −1
−1

()) + ( − 1)( −1


()−  −1
−1

())  0

for all   1. Hence revenues are increasing in . Note that the revenue of the -price all-pay

16See, e.g., Mood et al. (1963).
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auction (3.8) can be written as


 =

1Z
0



Ã
(1− )− ( − 1)

(
 −1


()−  −1

−1
()

1−  −1
−1

()

)!−1
 

2
()

A sufficient condition for revenues to be increasing in  is that the term between the curly

brackets is increasing in  for all  6= 0 1. We first make this condition somewhat more

intuitive. Consider an urn filled with red and blue balls and let  = 1− () be the chance of

drawing a blue ball, where 0    1. Suppose we draw  − 1 times with replacement. The
above condition can then be rephrased as follows: the chance of drawing exactly  − 1 blue
balls, given that at least − 1 blue balls were drawn, is increasing in . Hence, for all  is has
to be true that ¡

−1
−1
¢
−1(1− )−

−1P
= −1

¡
−1


¢
(1− )−−1



¡
−1


¢
(1− )−−1

−1P
= 

¡
−1


¢
(1− )−−1



Introducing  ≡ (1− )  0, the above inequality can be rearranged as:

Ã
1−

¡
−1


¢¡
−1
−1
¢ !

⎛⎝1 + −1X
= +1

¡
−1


¢¡
−1


¢ −
⎞⎠  1

The left side of this inequality can be expanded as 1 +
−P
=1

 
 where

 =

¡
−1
+

¢¡
−1


¢ − ¡ −1
+−1

¢¡
−1
−1
¢ = −

¡
−1
+−1

¢¡
−1
−1
¢  

(− )( + )
 0

which shows that revenues increase in .

To prove that a lottery yields less revenue than all-pay auctions, it is sufficient to show

that the first-price all-pay auction revenue dominates a lottery. Let  and  denote

the expected revenue from a lottery and and an all-pay auction, respectively, given   0. In

both formats, bidders’ payments are equal to their bids and   0 acts as a simple rebate.

Hence,

 =
0

1− 

as in equilibrium, each bidder submits a bid equal to 1
1− times the equilibrium bid for  = 0.

Likewise,

 =
0

1− 


The first-price all-pay auction is efficient, i.e., the object is always allocated to the bidder with
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the highest value, whereas a lottery is not. As, by assumption, the bidder with the highest

value is the bidder with the highest marginal revenue, it follows from Lemma 3.2 (see the

proofs of Propositions 3.4 and 3.5) that

0  0

as for  = 0, the utility for the lowest type equals 0 for both the lottery and the all-pay

auction. Therefore,

  

for all 0 ≤   1.

Finally, to prove that revenue may decrease with , we compare the revenues of the (−1)-
price all-pay auction with − 1 and  players when → 1

−1 . In this limit, the revenue with
− 1 players tends to

lim
→ 1

−1

−1−1 =

− 1
− 2

1Z
0



Ã
1− 

 −2
−2

()

1− 
 −2
−1

()

!
 −1

2
()

which diverges to infinity as 1− −2
−1

() = 0 for all . The revenue with  players is equal to

lim
→ 1

−1

−1 =

− 1
− 2

1Z
0



Ã
1−  −1

−2
()

1−  −1
−1

()

!
 

2
()

which is finite. Hence, for  close to 1( − 1), revenues are higher with  − 1 bidders than
with  bidders. ¥

Proof of Proposition 3.3. First, consider the two cases (i)  ≥ 1 and (ii)   1 and

 = . When  ≥ 1, any contribution to the public good returns at least as much as it costs,
and it is optimal to bid  . This is also true for the zero-value bidder in the lowest-price

all-pay auction when   1

. Thus, in both cases (i) and (ii), ∗ = 0 and revenue equals  .

Next, consider the case    and   1. The condition determining the cut-point ∗ is
that the difference between the expected payoff of bidding  and 

 (
∗) is zero:

0 =

−1X
=1

∗

 + 1

³
 −1

+1
(∗)−  −1


(∗)

´
+
¡
 −

 (
∗)
¢
( − 1)

³
 −1


(∗)−  −1

−1
(∗)

´
− ¡ −

 (
∗)
¢
(1− )

³
1−  −1


(∗)

´
 (3.14)

To understand the right-hand side of (3.14), consider a bidder with value ∗ and assume
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all others bid according to 
 () in (3.9). The expression in the top line captures the

bidder’s increased chance of winning the object worth ∗ when she raises her bid from 
 (

∗)
to  . The expression in the second line pertains to the case in which she is the -highest

bidder and, by bidding  , she increases the price she and the − 1 highest bidders pay from

 (

∗) to  . The third line applies when 
 (

∗) is not among the  highest bids and by
bidding  the bidder increases only her own price. When these benefits and costs balance,

the bidder is indifferent between bidding 
 (

∗) and  .

To show there exists an interior solution 0  ∗  1 to (3.14), we define

() ≡ ( − 1)
³
 −1


()−  −1

−1
()
´
− (1− )

³
1−  −1


()
´


and

() ≡ ( −
 ())() +

−1X
=1



 + 1

³
 −1

+1
()−  −1


()
´


The indifference condition (3.14) then becomes (∗) = 0. First note that (0)  0 as

(0)  0. Since 
 () diverges when  tends to 1 (if not before), there must be some value

̃  1 for which 
 (̃) =  . At that value, (̃)  0. Hence, continuity of (·) implies

there exists an interior value where (·) vanishes. Let 0  ∗  1 denote the smallest  for

which () = 0.

To prove that (3.9) constitutes an equilibrium we need to show: () bidders with values

  ∗ submit bids according to a well-defined increasing bid function, () this bid function
follows from the same equilibrium differential equation as in Proposition 3.2, and () bidders

with values  ≥ ∗ strictly prefer to bid  given others’ equilibrium bids. Condition () is

readily checked. Condition () follows immediately from (3.14), since for bidders with values

  ∗ only the potential gain in the top line changes. Hence, if a bidder with  = ∗ is
indifferent between bidding  and 

 (
∗), bidders with types   ∗ strictly prefer to bid

 . The only condition that remains to be checked is ().

Let ∗∗ be the smallest  for which () = 0. We first show that 
 () is well-defined

and increasing in  for all   ∗∗ and then show that ∗ ≤ ∗∗. Recall from (3.7) that


 () =

Z
0

(− 1)() ()−2
−( − 1)(1−  −1

−1
()) + ( − 1)(1−  −1


())



which is well-defined and strictly increasing as long as the denominator is positive, i.e. when

()  0. As (·) is continuous and (0)  0, 
 () is strictly increasing in  for all   ∗∗.

(Note that by the definition of ∗∗, the derivative of 
 () with respect to  approaches

infinity as  approaches ∗∗.) Clearly (∗∗) ≥ 0, and since (0)  0, continuity of (·)
implies that () = 0 for some  ≤ ∗∗: the smallest  for which this holds is ∗, so ∗ ≤ ∗∗.

Finally, 
   for all    when   1 since the cut-point satisfies ∗  0 in this
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case. Thus, there is positive probability that at least one bidder bids less than , and expected

revenue is thus less than  . From the proof of Proposition 3.2 we know that   
1

when   1, so    when   1. ¥

Proofs of Propositions 3.4 and 3.5. To prove that the lowest-price all-pay auction is

optimal, we consider more general mechanisms and derive their revenue properties in Lemmas

3.1 and 3.2. First, some notation:

 ≡ [0 1]

and

− ≡ [0 1]−1

with typical elements v ≡ (1 · · ·  ) and v− ≡ (1 · · ·  −1 +1 · · ·  ) respectively. Let

(v) ≡
Y


()

be the joint density of v, and let

−(v−) ≡
Y
 6=

()

be the joint density of v−. We define the marginal revenue () ≡  − (1− ())()

and assume it is strictly increasing in .

We follow Myerson (1981) closely. Using the Revelation Principle, we may assume, without

loss of generality, that the seller considers feasible direct mechanisms only.17 Let ( ) denote

a feasible direct mechanism, where  :  → [0 1] with
P

 (v) ≤ 1, and  :  → <. We

interpret (v) as the probability that bidder  wins and (v) as the expected payments by

 to the seller when the vector of values v = (1 · · ·  ) is truthfully announced. Given ,

bidder ’s interim utility under ( ) is

(  ) ≡
Z
−

⎡⎣(v)− (v) + 

X
=1

(v)

⎤⎦ −(v−)v− (3.15)

Similarly, the seller’s expected utility is

0( ) ≡
Z


X
=1

(v)(v)v

17A direct mechanism is a mechanism where bidders are simply asked to announce their values. We say that

a mechanism is feasible if it satisfies individual rationality conditions, incentive compatibility conditions, and

straightforward restrictions on the allocation rule.
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The following two lemmas will be used to solve the seller’s problem.

Lemma 3.1 Let ( ) be a feasible direct revelation mechanism. Then the interim utility of

( ) for bidder  is given by

(  ) = (  0) +

Z
0

() (3.16)

with () ≡ v−{()}.

Proof. The proof follows in a straightforward manner from the incentive compatibility con-

straints, see Myerson (1981).

Lemma 3.2 Let ( ) be a feasible direct revelation mechanism. The seller’s expected revenue

from ( ) is given by

0( ) =

v{
P
=1

()(v)}−
P
=1

(  0)

1− 
 (3.17)

Proof. Define  =
R


(v)(v)v,  =
R


(v)(v)v, and  =
R


(  )().

By (3.15), we have, for all ,

 =  − + 

X
=1

  (3.18)

Summing over  in (3.18) and rearranging shows that the seller’s expected revenue from a

feasible direct revelation mechanism ( ) is given by

0( ) =

X
=1

 =

P
=1

 −
P
=1



1− 
 (3.19)

Taking the expectation of (3.16) over  and using integration by parts, we obtain

 = (  0) +

½
1−  ()

()
()

¾


so that (3.17) follows.

Now, using Lemma 3.2, we prove Propositions 3.4 and 3.5. From (3.17), it is clear that a

feasible auction mechanism is revenue maximizing if it: (1) assigns the object to the bidder
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with the highest marginal revenue if the highest marginal revenue is positive and leaves the

object in the hands of the seller otherwise, and (2) gives the lowest type zero expected utility.

We first prove Proposition 3.4. Under the restriction that the seller cannot commit to

keeping the good, a feasible auction mechanism is revenue maximizing if it assigns the good to

the bidder with the highest marginal revenue (even if negative) and guarantees the lowest-type

bidder zero expected utility. It is clear that 
 () in (3.7) is strictly increasing in , as the

denominator of the integrand in (3.7) is strictly positive when   1. So the lowest-price

auction assigns the object to the bidder with the highest value and, hence, to the bidder with

the highest marginal revenue. Furthermore, a zero-type bidder bids zero according to (3.7),

which sets the auction’s revenue at zero, leaving the lowest-type bidder with zero expected

utility. Hence, the lowest-price all-pay auction is revenue maximizing. (We have already shown

that revenue increases with  in the proof of Proposition 3.2.)

Next we turn to Proposition 3.5. In the equilibrium defined by (3.11), only bidders with

values   b submit a bid according to a strictly increasing bid function whereas bidders with
values   b abstain from bidding. Hence, Γ assigns the good only to bidders with positive

marginal revenues (if at all). Moreover, the bidding function in (3.11) is strictly increasing

in  so that the bidder with the highest marginal revenue receives the object. Finally, the

expected utility of a bidder with the lowest type equals zero over both stages of Γ, as

(  0) = (− 1)+ (− 1)(1−  (b)) = 0

by the definition of . The given strategies constitute a Bayesian Nash equilibrium, and when

these are played, Γ maximizes (3.17) and is thus optimal. Revenues increase with , as the

denominator of (3.17) is decreasing in . ¥
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Chapter 4

Simultaneous Pooled Auctions with

Multiple Bids and Preference Lists

4.1 Introduction

In the past few decades, it has become more and more common that governments use auctions

to allocate scarce resources such as spectrum for mobile communication or radio broadcasting,

petrol station locations, telephone numbers, etc. Given the official goals of various allocation

procedures, governments not always had a “lucky hand” in choosing the right auction de-

sign.1 This paper adds to the list of unfortunate auction designs by analyzing the theoretical

properties of an auction whose properties were not yet known.

The allocation mechanism we study has been used in practice at least twice. The first

time, it was used for allocating licenses for commercial radio stations in The Netherlands in

2003.2 In 2005, it was used in Ireland to allocate licenses for wideband digital mobile data

services.3

In the two auctions, multiple (possibly heterogeneous) licenses were allocated (in the

Netherlands, licenses differed in their coverage). Each firm was allowed to acquire at most one

license. The auction format was sealed-bid, and firms could express different bids for different

licenses. Each firm also had to submit a list specifying its preferences over the licenses on

which it bids. These preference lists played a role when a firm had submitted highest bids

for several licenses. Each winning firm paid its own bid for the license it acquired.4 This

allocation mechanism can be best described as a simultaneous pooled auction with multiple

1See, e.g., Klemperer (2002) for a review.
2See Staatscourant 26 February 2003, No. 40, p. 19, for the precise rules of the allocation mechanism used

in The Netherlands, available at https://zoek.officielebekendmakingen.nl/stcrt-2003-40-p19-SC38745.html.
3The media release of the outcome of the auction, reference number PR211205, can be found on the website

of ComReg: http://www.comreg.ie/_fileupload/publications/PR211205.pdf. The auction documents of the

Commission for Communications Regulation (ComReg) are confidential; the detailed information over the

proceeding of the Irish auction has not yet been made public.
4The details of the allocation procedure are described in Section 4.2.
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bids and preference lists.

In this paper, we show that this auction format fails to produce one of the most basic and

desirable properties of an allocation mechanism, namely that it has an efficient equilibrium. In

other words, the licenses do not always end up in the hands of those who value them the most.

The reason for this result is as follows. Allocation efficiency requires that all bidders follow

the same (symmetric) monotonically increasing (pure) bidding strategy. This implies that if

an efficient equilibrium exists, the bidder with the highest possible valuation must submit the

highest bids for all objects, and he takes the most preferred one. However, this bidder can

potentially increase his expected profit by changing his most preferred object and, at the same

time, significantly reducing the bid for that object. In this deviation, the bidder’s equilibrium

(high) bid for his equilibrium (old) most preferred object remains the highest and, therefore,

guarantees him his equilibrium pay-off. The bidder will obtain his equilibrium pay-off if the

reduced bid for the new most preferred object is not the highest. However, if the reduced bid

turns out to be the highest bid, the bidder obtains his new most preferred object for a very

low price.

Of course, it is difficult to assure that the auction was indeed inefficient as the presence of

economic inefficiency is difficult to test statistically given the data available. However, there

are some indications that the outcome of the Dutch allocation mechanism was inefficient - at

least, ex-post. A first indication is that not long after the auction, quite a few licenses were

resold to third parties or retraded between the parties.5 Had the licenses ended up in the

hands of those parties that valued them the most, reselling/retrading just after the auction

should not have taken place.6 A second indication is that one of the licenses with a specific

format requirement (these licenses were auctioned separately from the licenses for unrestricted

programming at the same moment in time), was sold for a higher amount than the cheapest

license for unrestricted programming (presumably, a more valuable license).

This paper fits into the literature that deals with the question how to auction a set of

heterogeneous licenses. The literature distinguishes between static auction mechanisms, such

as the Vickrey-Clarke-Groves (VCG) mechanism, and dynamic auction mechanisms, such as

the simultaneous ascending auction. The VCG mechanism is developed by Clarke (1971)

and Groves (1973), and generalizes the (multi-unit) Vickrey auction.7 In this mechanism

5In particular, Noordzee FM (Talpa Radio International) was sold to De Persgroep on 31 May 2005, Radio

538 (Advent International Corporation) to Talpa Radio International on 31 May 2005, Yorin FM (RTL Neder-

land) to SBS Broadcasting on 4 January 2006, and Sky Radio (News Corporation) to TMG (Telegraaf Media

Groep) on 1 February 2006.
6Formally, we do not allow for resale after the auction in our model. However, had an equilibrium existed

in a model with resale where the auction outcome had been efficient, the resale option would not have been

used. But then there must also have been an efficient equilibrium in the model without resale that we analyze

in the current paper. Since we show that there is no such equilibrium, there cannot be an equilibrium with an

efficient auction outcome in an auction with resale opportunities. Our results thus imply that only equilibria

with a possibility of inefficient outcomes can arise in a model where resale is explicitly taken into account.
7Clarke and Groves constructed this mechanism for a class of problems that is far more general than the

allocation of objects: their mechanism applies to any public choice problem.
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all bidders simultaneously submit sealed-bids on all objects. The auctioneer determines an

efficient assignment of the objects based on the bids. Payments are determined so as to

allow each bidder a payoff equaling the incremental surplus that he brings to the auction. In

simultaneous ascending auctions, all objects are sold simultaneously using an English auction

procedure in which prices on each object are increased until there is no more bidding for any of

the objects. At that point, the auction ends and the bidders that have made the highest bids

receive the objects. Leonard (1983) and Demange et al. (1986) show that in a simultaneous

ascending auction, an efficient equilibrium is established when bidders bid “straightforwardly,”

i.e., in each round, each bidder who currently does not have a standing high bid, bids for the

object that currently offers him the highest surplus; and they drop out once the highest

available surplus becomes negative.

Other related auction mechanisms are static and dynamic right-to-choose auctions, in

which the right-to-choose is auctioned rather than the objects themselves. An example of

a static right-to-choose auction is the simultaneous pooled auction (see, e.g., Menezes and

Monteiro, 1998). In such an auction bidders simultaneously submit a nonearmarked single

bid in a sealed envelope for one of the objects in a pool. The highest bidder chooses his

most preferred object; the second highest bidder chooses among the remaining objects; and

this process continues until all objects are sold. Each winner pays his own bid. Because

bidders are uncertain about which object from the pool they are going to win, and are only

allowed to submit a single bid, they may fall prey to some sort of winner’s curse. Salmon

and Iachini (2007) experimentally show that bidders often overbid and incur losses because

they are forced to buy objects that are not their most preferred ones. In the mechanism

analyzed in the present paper, bidders do not suffer from this unexpected loss because they

are allowed to submit as many bids as objects. Menezes and Monteiro (1998) show that in

the homogeneous private-value case with risk-neutral bidders, simultaneous pooled auctions

are revenue equivalent to a sequential first-price sealed-bid auction.

Dynamic right-to-choose auctions, also referred to as a sequential pooled auctions or condo

auctions (because of its use in selling condominiums in the United States)8, consist of a

sequence of regular auctions in which bidders bid for the right to choose any object among

the objects not yet sold. Burguet (2005) shows that ascending right-to-choose auctions, i.e.,

right-to-choose auctions that consist of a sequence of regular English auctions, are efficient

for two ex-ante symmetric objects. Gale and Hausch (1994) derive the same conclusion for

a two-bidder model with more general preferences than in Burguet (2005). Goeree et al.

(2004) introduce bidders’ risk aversion into Burguet’s (2005) model. They show that ascending

right-to-choose auctions raise more revenue than standard simultaneous ascending auctions.

Eliaz et al. (2008) examine second-price sealed-bid right-to-choose auctions, i.e., right-to-

choose auctions that consist of a sequence of second-price sealed-bid auctions. They show,

8See Ashenfelter and Genesove (1992).
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both theoretically and experimentally, that in thin markets where there is little interest per

object, the second-price sealed-bid right-to-choose auction raises more revenue than sequential

auctions for the individual objects. They also provide experimental evidence that a right-to-

choose auction can generate even more revenue than a theoretically optimal auction. Moreover,

in contrast to the optimal auction, the right-to-choose auction is approximately efficient in the

sense that the surplus it generates is close to the maximal one.

This paper is also related to the literature on the efficiency properties of auction mech-

anisms. Moldovanu and Sela (2003) who analyze aftermarket Bertrand competition where

cost is private information at the auction stage (and statistically independent of rivals’ costs),

show that standard auction mechanisms may lead to inefficient allocations if firms’ values of

a patent for a cost-reducing technology are strongly interdependent.9 The reason is that, if

a symmetric separating equilibrium is played, then, on the margin, due to the strong nega-

tive externality, a firm that is more cost efficient has a lower willingness to pay for a license

than a firm that is less cost efficient. Janssen and Karamychev (2010) show that even if the

informational externality (interdependence) is weak, efficient equilibria may fail to exist if the

bidders’ types, i.e., bidders’ cost efficiency parameters are strongly correlated ex ante. The

present paper, in contrast, shows that simultaneous pooled auctions with multiple bids and

preference lists are inefficient even in the independent private valuation setting.

Finally, the paper can be related to the literature on price dispersion.10 We show that even

if objects are perfect substitutes, there can be an equilibrium in which firms bid differently for

the objects.

The rest of the paper is organized as follows. In Section 4.2, we set up the model, which

contains the key features of the design of auctions held in The Netherlands and in Ireland.

In Section 4.3, we look at efficient Nash equilibria of the model and analyze their existence

conditions. Section 4.4 concludes.

4.2 The Model

There are two objects for sale and   2 bidders.11 Bidders are allowed to win at most one

object.12 Bidder  assigns a value  to object 1 and a value  to object 2, where  ∈ (0 1]
is common to all bidders. The assumption of linear dependence of the valuations is made for

simplicity; a common monotonically increasing scalar function would yield the same result but

add to the notational complexity. Valuations  are independently and identically distributed

9The value of the patent for a firm is the difference between the profit it makes in case it acquires the patent,

and the profit in case it does not. An auction is said to be efficient if it awards the patent to the firm with the

highest value, i.e., the firm with the ex-ante lowest cost.
10For an overview of this literature, see Baye et al. (2006).
11As the analysis for more than two objects is very similar, for simplicity of notation we concentrate on the

two-object case. The two-object case is enough to prove inefficiency.
12 It may well be that the firms value more than one license, but the Dutch and Irish auction rules prevented

the bidders from getting more than one license.
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over the unit interval [0, 1] according to the distribution function  . The value of  is private

information to bidder . The values of  and  and the distribution function  are common

knowledge.

If   1, the objects are heterogeneous and the first object is preferred by all bidders to the

second.13 The ratio of valuations for the two objects is identical for all bidders. This seems to

capture the essence of the Dutch radio-frequency auction quite well, where the value of a license

is directly related to its demographic coverage. The licenses in the Dutch radio-frequency

auction differed in their demographic coverage. If the coverage of the license increases and

a firm attracts a certain percentage of the population, then the total number of listeners

(hence, the firm’s valuations of licenses) is proportional to that coverage. If licenses are ex-ante

identical in their demographic coverage, they can be analyzed by the model with homogeneous

objects, where  = 1. In what follows, we do not consider asymmetric auctions where different

bidders are characterized by different values of  as in case of asymmetries a general argument

can be easily invoked to establish the inefficiency of the auction.14

In order to be more precise about modeling the role of the preference list, we first describe

the specific allocation rule used in The Netherlands. The allocation rule determines which

bidder wins which object. In the first iteration of the allocation process, it is determined

whether the highest bidder for an object has given his first preference to this object. If this

is the case, then all such bidders are considered to be the winners of the respective objects.

Those bidders who have obtained an object in the first iteration are excluded along with the

object that they have got, and the second iteration starts (if there are objects left). In this

second iteration, for each remaining object it is determined who of the remaining bidders have

submitted the highest bid. These bidders then win these objects provided they have given

their first or second preference to these objects. These winning bidders and objects are also

removed from the procedure. In the third iteration, the highest bidders with up to the third

preference to the corresponding objects are admitted to be the winners and are eliminated

along with the objects. This process iterates until all objects are allocated. In each iteration,

the minimal required preference is increased with one.

The allocation rule used in Ireland is slightly different from the Dutch rule. Objects are

assigned to the highest bidder unless this highest bidder has submitted multiple highest bids.

In the latter case, he wins the object that is higher on his preference list. The winners and the

corresponding objects are removed. The other objects are assigned in the next iteration(s) in

exactly the same fashion. Thus, preferences in the Irish auction only play a role if a bidder

13Even though a bidder has a higher valuation for object 1 he might still put his preference on object 2

together with significantly lowering his bid for object 2.
14 If bidders are asymmetric, their types are either drawn from different distributions or the ratio of their

valuations for the two objects is different. Efficient equilibria do not exist in either one of these cases, as efficiency

requires that bidding functions for different bidders must be identical (players with higher valuations must bid

higher), while asymmetry requires different bidders to use different bidding functions (as the distribution of

valuations of a bidder’s competitors has an impact on the bidder’s equilibrium bidding functions).
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has submitted multiple highest bids. Note that, despite the Irish and the Dutch allocation

rules are formally different, they yield the same allocation if there are only two objects.

We capture this preference list in our two objects model in the following way. Every bidder

 submits two bids, 1 and 
2
 , in a sealed envelope, one for each object, and states his preference

over the two objects. The preference is expressed in terms of a probability distribution over

the two objects and is represented by , the probability of taking object 1.

The auctioneer collects all triples
¡
1  

2
  

¢
from all bidders and determines the highest

bids for every object. If these highest bids belong to different bidders, these bidders win the

objects for which they are the highest bidders, and they pay their winning bid as a price. If,

however, it is one and the same bidder  who has submitted the highest bids for both objects,

then this bidder gets object 1 with probability  and object 2 with probability (1− ).

Bidder  pays his bid for the object that he gets. The other object goes to the bidder who has

submitted the second highest bid for that object. This bidder also pays his bid as a price.

4.3 Analysis

We will search for efficient Nash equilibria of this game, i.e., equilibria in which the two

bidders with the highest two valuations win the objects, and, furthermore, in case   1, the

bidder with the highest value wins object 1 (the most valuable object) and the bidder with

the second highest value wins object 2. As allocation efficiency15 requires that bidders follow

a symmetric monotonically increasing bidding strategy, we focus on such equilibria. In an

efficient equilibrium, if it exists, each bidder  with valuation  submits a bid 1 = 1 () for

object 1 and a bid 2 = 2 () for object 2, and sets his preferences for object 1, i.e.,  = 1.

In case  = 1, efficiency does not require  = 1. For example, the strategy 
1
 = 2 =  ()

with 0 ()  0 and an arbitrarily distributed  ∈ [0 1] always yields an efficient allocation.
As we will see in Proposition 4.2, these strategies do not form an equilibrium.

We first show that for any   1 there is no efficient Nash equilibrium if the number of

bidders,  , is sufficiently large. The intuition is as follows. In an efficient equilibrium, a

bidder  with the highest possible valuation  = 1 submits the highest bid on both objects

with certainty. Efficiency requires that  = 1, and bidder  wins object 1. By significantly

reducing his bid on object 2 and making this object his most preferred choice by submitting

 = 0, he can increase his expected payoff (due to a higher surplus in the event he is still the

highest bidder on object 2), which constitutes a profitable deviation. As the realized profit

from such a deviation is strictly positive and independent of  , whereas the profit in the

proposed efficient equilibrium asymptotically decreases to zero, a larger number of bidders,  ,

makes the deviation more profitable.

15Allocation efficiency is obtained if the sum of the valuations of the winning bidders is maximized (where

the valuation of the second object in the hands of the same bidder is zero).
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Proposition 4.1 For any  ∈ (0 1), there exists a number ̂ () such that for all   ̂ ,

any equilibrium of the auction is inefficient, i.e., the outcome of the auction is inefficient with

positive probability.

Proof. We start this proof by assuming that there exists an efficient (i.e., a monotone symmet-

ric pure-strategy) bidding equilibrium. In such an equilibrium, bids 1 and 
2
 are monotonically

increasing functions of types, the distribution of bids has no mass points, and the expected

profit of a bidder is a continuous and monotonically increasing function of his type.16 Below

we show that under the condition of the proposition this assumption leads to a contradiction.

First of all, in any efficient equilibrium, the surplus of every type  must converge to zero

when  → ∞. This can be seen as follows. In equilibrium, a bidder has the highest bid on
both objects or on neither object. If a bidder  has a valuation   1, then the probability

that he wins any of the objects converges to zero when  → ∞. Consequently, the ex-ante
expected surplus of bidder  also converges to zero with  . If, however,  = 1, then the

winning probability is equal to 1 for any number of bidders, and bidder ’s expected surplus

is equal to the surplus of his most preferred object revealed by , i.e., the larger of the two

surpluses 1− 1 and − 2 . If it were true that 1− 1    0 for all  , then bidder  with

value  = 1 − 3 (who is receiving asymptotically zero expected surplus in equilibrium, as

we explained above) would have got, by bidding 1 = 1 + 3, a strictly positive surplus of

 − 1 =
³
1− 

3

´
−
³
1 +



3

´




3
 0

If, on the other hand, it were true that  − 2    0 for all  , then bidder  with value

 = 1−  (3) would have got, by bidding 2 = 2 + 3, a strictly positive surplus of

 − 2 = 
³
1− 

3

´
−
³
2 +



3

´




3
 0

In both cases, there is a bidder  who can profitably deviate. Hence, for any   0, 1− 1  

and − 2   if  is taken to be large enough.

Next, we consider a bidder  with valuation  = 1, who submits the highest bid on both

objects and surely wins his most preferred object, i.e., object 1 (as efficiency requires  = 1).

His surplus from this object converges to zero when  →∞ (as shown above). Hence, there

exists a number ̂ () such that 1− 1  2 for all   ̂ (). Bidder , though, can

profitably deviate by bidding   2 for object 2 and submitting  = 0. He is then still the

bidder with the highest bid on object 1, which assures him his equilibrium profit. In addition,

with a small probability, he has the highest bid on object 2 as well. In that case he wins object

2 at price . For all   ̂ () this deviation is profitable because −   2  1− 1 .

16Monotonicity follows from the following simple consideration: by submitting the same bids as type 0, any
higher type 00  0 has the same winning probability as type 0 but gets a strictly higher surplus conditional
on winning. Continuity follows from the fact that in equilibrium, the distribution of bids has no mass points.
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Since the expected profit of a bidder in equilibrium is a continuous function, similar argu-

ments apply to all types that are sufficiently close to type  = 1. Hence, the game has no

efficient equilibrium, i.e., no monotone symmetric pure-strategy bidding equilibrium. Conse-

quently, the auction is inefficient with positive probability.

Proposition 4.1 thus provides a condition under which bidders with the highest values

leave the auction empty-handed with strictly positive probability. The reason for this type of

outcome inefficiency applies quite generally. It does not matter whether firms’ values for both

objects are perfectly correlated (as in our model) or imperfectly correlated; the argument is

even applicable when values are negatively (imperfectly) correlated. We illustrate this point

as follows.

Suppose that the values 1 (for object 1) and 2 (for object 2) are continuously distributed

over the support [0 1]2 with an arbitrary distribution function. Then, if an efficient equilibrium

exists, equilibrium bids of the highest type
¡
1 2

¢
= (1 1) for both objects must be the

highest bids for both objects, due to the monotonicity of the equilibrium bidding functions.

This, however, is exactly the source of a profitable deviation for the bidder: to reduce one bid

and to make the corresponding object his preferred object. Following the logic of Proposition

4.1, this deviation is profitable as long as the number of bidders is large. What is crucial for

this argument to work is that the highest type belongs to the support of the distribution.

In accordance with Proposition 4.1, if the number of bidders is sufficiently large, only

inefficient equilibria may exist. This inefficiency result might not really be a problem in

practical situations if the game has efficient equilibria for small  . The following proposition,

however, shows that the nonexistence of efficient equilibria may even occur for  = 3 if  is

sufficiently large, i.e., the objects are sufficiently close to each other in value. This result is

intuitive. Fix  . Consider bidder  with the highest possible valuation  = 1. For small  ,

bidder ’s profit in the efficient equilibrium is relatively large. The profit from following the

deviation strategy (see above) differs from the equilibrium profit in the event bidder  is still

the highest bidder on object 2 when he deviates. Bidder ’s profit from deviating is in this

event at most  (the value of object 2 to bidder ). If  is small, i.e., the objects are very

heterogeneous, the equilibrium profit is larger than the profit from deviating. Bidder  then

does not have an incentive to deviate from the equilibrium strategy.

Proposition 4.2 For any  ≥ 3, there exists a number ̂ () ∈ (0 1) such that for all
 ∈ (̂ ()  1]  any equilibrium of the auction is inefficient, i.e., the outcome of the auction

is inefficient with positive probability.

Proof. Suppose that there exists an efficient (i.e., a monotone symmetric pure-strategy)

bidding equilibrium, and  ( ) denotes the equilibrium expected surplus of the bidder of

type . Define

̂ ( ) = sup
∈(01)

 ( ) 
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We first show that ̂ ( 1)  1. Subsequently, we show that for all  ∈ (̂ ( 1)  1) there

are types that have a profitable deviation from the proposed equilibrium. Finally, we show

that these same types also have a profitable deviation for  = 1. Thus, for all  ∈ (̂ ()  1],
where ̂ () = ̂ ( 1), the game has no efficient equilibrium. Consequently, the auction is

inefficient with positive probability.

Suppose, to the contrary, that ̂ ( 1) = 1. This implies that for any   0 there exists

some ̃  1 such that  (̃ 1)  1− . As efficiency requires  = 1, the equilibrium bid 1

of type  = 1 must satisfy 1  , and, due to monotonicity, all other types also bid below .

As  is taken arbitrarily small, this leads to 1 = 0 for all types, which is clearly impossible in

equilibrium. Hence, ̂ ( 1)  1.

Let us consider now bidder  of type  = 1 (the same argument applies to types in a small

neighborhood of  = 1). The deviation by bidding 
2
 =  for object 2 and submitting  = 0

is a profitable deviation provided that  −    ( 1). Hence, as long as   ̂ ( 1) ≥
 ( 1) and   1, there exists a sufficiently small , 0     − ̂ ( 1), so that the

deviation is indeed profitable. On the other hand, it must be that  (1 1)  1. If this were

not the case, it would have been the case that  (1  1) = 1, type  = 1 would have bid

zero for one of the objects, and hence all types would have bid zero for that object due to

monotonicity. This, however, can never happen in equilibrium. Hence, also for  = 1, type

 = 1 has a profitable deviation by bidding , 0     (1  1).

The conditions in Proposition 4.1 and Proposition 4.2 can be made more precise if we make

an extra assumption about the distribution function  . In the following example we show that

when valuations are uniformly distributed, the outcome is inefficient even if the objects are

quite different, , even if  is relatively small (but larger than 1 ( − 1)).

Example 4.1 Let  ≥ 3 and the valuations be uniformly distributed over [0 1]. The effi-
ciency criterion requires  = 1. Suppose all bidders  6=  follow a symmetric bidding strategy

and bid
³
1  

2
  

´
=
¡
1 ()  

2 ()  1
¢
. If bidder  bids

¡
1  

2
  

¢
=
¡
1
¡
1
¢
 2
¡
2
¢
 1
¢
,

where 1 () and 2 () are assumed to be strictly increasing and continuously differentiable

bidding functions, he gets the following expected payoff:

 =
¡
 − 1

¢
Pr
¡
1  1−

¢
+
¡
 − 2

¢
Pr
¡
2  2−

¯̄
∃ : 1  1−

¢ ¡
1− Pr ¡1  1−

¢¢


Let us consider the following two cases, in which we denote the first and the second order

statistics of  − 1 competitors’ valuations − by  and  respectively:

(a) If 1 ≥ 2, then Pr
¡
1  1−

¢
= Pr

¡
1  

¢
=
¡
1
¢−1

and

Pr
¡
2  2−

¯̄
∃ : 1  1

¢ ¡
1− Pr ¡1  1−

¢¢
= Pr

¡
  1 ≥ 2  

¢
= ( − 1) ¡1− 1

¢ ¡
2
¢−2


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so that

 =
¡
 − 1

¢ ¡
1
¢−1

+
¡
 − 2

¢
( − 1) ¡1− 1

¢ ¡
2
¢−2



(b) If 1 ≤ 2, then, again, Pr
¡
1  1−

¢
= Pr

¡
1 ≥ 

¢
=
¡
1
¢−1

and

Pr
¡
2  2−

¯̄
∃ : 1  1

¢ ¡
1− Pr ¡1  1−

¢¢
= Pr

¡
  1 2  

¢
= Pr

¡
2    1

¢
+Pr

¡
  2  

¢
=
¡
2
¢−1 − ¡1¢−1 + ( − 1) ¡1− 2

¢ ¡
2
¢−2



so that

 =
¡
 − 1

¢ ¡
1
¢−1

+
¡
 − 2

¢ ³¡
2
¢−1 − ¡1¢−1 + ( − 1) ¡1− 2

¢ ¡
2
¢−2´



Combining both cases, we can rewrite  as follows:


¡
 

1 2
¢
=
¡
 − 1

¡
1
¢¢ ¡

1
¢−1

+
¡
 − 2

¡
2
¢¢
( − 1) ¡1− 1

¢ ¡
2
¢−2

+
¡
 − 2

¡
2
¢¢ ³¡

2
¢−1 − ¡1¢−1 − ( − 1) ¡2 − 1

¢ ¡
2
¢−2´

1≥0
¡
2 − 1

¢


where 1≥0 () is the indicator function of the subset of nonnegative real numbers:

1≥0 () ≡

⎧⎪⎪⎨⎪⎪⎩
1 if  ≥ 0

0 if   0

Bidder  maximizes  with respect to 1 and 2, and the maximum must be attained at

 = 1 = 2 = , which is the truth-telling condition for the mechanism. The first-order

conditions are:⎧⎪⎨⎪⎩
0 = 

1
(  ) = −

³
 

1


()− ( − 1) ¡ − 1 ()

¢
+ ( − 1) ¡ − 2 ()

¢´
−2

0 = 
2

(  ) = − ( − 1)
³
 

2


()− ( − 2) ¡ − 2 ()

¢´
(1− ) −3

Solving this system of differential equations yields the following unique candidate bidding

functions: ⎧⎪⎨⎪⎩
1 () =

−(1+)




2 () = −2
−1

Thus, if an efficient Nash equilibrium exists, it must be given by the above bidding functions.
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Let us consider a bidder  with valuation  = 1. His equilibrium payoff is

 (1 1 1) = 1−  − (1 + )


=
1 + 




Deviating by bidding 2 = 2 () =  ( − 2)  ( − 1), where  is arbitrarily small, bidder 
has still the highest bid on object 1, but with a small probability he is also the highest bidder

for object 2. Stating his preference as  = 0 yields him on such rare occasions a payoff of

− 2 (). Thus, the payoff ̃ of bidder  from such a deviation is:

̃ ≡
¡
 − 2

¢
Pr
¡
2 ()  2 (−)

¢
+
¡
 − 1

¢
Pr
¡
1  1−

¯̄
∃ : 2 ()  2 ()

¢ ¡
1− Pr ¡2 ()  2 (−)

¢¢
=
¡
 − 2 ()

¢
Pr
¡
2 ()  2 (−)

¢
+
¡
 − 1

¢ ¡
1− Pr ¡2 ()  2 (−)

¢¢
=
¡
 − 2 ()

¢
Pr (−  ) +

¡
 − 1

¢
(1− Pr (−  ))

=

µ
−  − 2

 − 1
¶
−1 +

µ
1−  − (1 + )



¶¡
1− −1

¢
=
1 + 


+

µ
− 1 + 


−  − 2

 − 1
¶
−1

This implies that if   (1 + )  , there exists an ,

 
− 1+


−2
−1

=
( − 1) (( − 1)− 1)

( − 2)


such that ̃
¡
  

1 ()  
2 ()

¢
 (1 + )  =  (1 1 1), so that the deviation is profitable.

Hence, an efficient equilibrium does not exist for   1 ( − 1). N

In summary, Proposition 4.2 shows that the non-existence of efficient Nash equilibria is not

only an asymptotic property of the game, as established in Proposition 4.1. Efficient equilibria

fail to exist also for small  , as long as the objects are sufficiently close in value. For the

uniform distribution (see Example 4.1), efficient Bayes-Nash equilibria fail to exist for any

 ≥ 3 provided   05. On the other hand, efficient equilibria fail to exist even for small

values of , i.e., when objects are very different in valuations, as long as the number of bidders

is large. For the uniform distribution, efficient Bayes-Nash equilibria fail to exist for any   0

provided   1 + 1.

As an efficient equilibrium does not exist, an equilibrium must be non-monotone, asymmet-

ric, or in mixed strategies. In either of these three cases, there is a strictly positive probability

that the less valued object is sold for more than the more valued object. In this sense, the

paper may give an explanation for the observation in the Dutch auction that less valuable

spectrum is sold for a higher price than more valuable spectrum.

When  = 1, efficiency does not require  = 1 anymore (because both objects are ho-
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mogeneous). This may lead to another type of equilibrium, where bidders do not coordinate

on bidding 1 () for object 1 and 2 () for object 2. Bidders simply submit two bids for

two objects, and they do not pay any attention whether the bid 1 () is placed on object 1

and the bid 2 () is placed on object 2, or the other way around. From the point of view

of one bidder, any other bidder puts 1 () and 2 () on object 1 with equal probability.
17

In other words, bidders put their (deterministic) bids randomly on both objects. In order to

get the highest possible expected surplus, every bidder will set his preferences for the object

on which he submits the lowest bid. As all  bidders place their bids on both objects in-

dependently of each other, each of 2 possible distributions of 2 bids across two objects

occurs with equal probability. This equilibrium can alternatively be viewed as a symmetric

mixed-strategy bidding equilibrium.

Interestingly, Proposition 4.2 is also applicable for  = 1, as the following corollary states.

Corollary 4.1 For  = 1 and  ≥ 3, any equilibrium of the auction is inefficient, i.e., the

outcome of the auction is inefficient with positive probability.

As noted above, efficiency does not require  = 1 anymore when  = 1. Nevertheless,

efficiency still requires the bidding functions 1 () and 2 () to be monotonically increasing

and symmetric. The highest type must therefore be the highest bidder for both objects. As

in the case   1, this requirement leads to the existence of a profitable deviation by type

 = 1.

So far, we have argued that the mechanism we discuss does not have an efficient equilibrium.

One may wonder what an inefficient equilibrium looks like. This is, however, extremely difficult

to analyze in general, because equilibria are either non-monotone, asymmetric, or in mixed

strategies. In the following example, we have numerically computed equilibrium bids in an

inefficient equilibrium when valuations are uniformly distributed and objects are homogeneous,

i.e.,  = 1. The example also shows in more detail why, even when  = 1, the auction outcome

may be inefficient. The main idea is that the bidder with the second-highest valuation does

not need to win the second object.

Example 4.2 Let  = 3,  = 1, and the valuations be uniformly distributed over [0 1]. Each

bidder  of type  follows the following strategy. First, he computes two bids 
 () and

 (); see Figure 4.1. Then, with probability 50%, the bidder places his high bid  () on

object 1 and his low bid on object 2, and sets  = 0. With the remaining probability of 50%,

he places his high bid  () on object 2 and his low bid on object 1, and sets  = 1.

17The superscripts of the bidding functions 1 () and 2 () do not refer anymore to the objects and are

only used to make a distinction between the bids.
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Figure 4.1: Equilibrium bidding functions  () (bold line) and  () (dotted line), left graph,

and their derivatives, right graph, as functions of .

Confronted with such a behavior by his competitors, bidder  faces equal distributions of

competitors’ bids for objects 1 and 2. As a result, he is indifferent between the objects, and

mixes his own bids as well. The equilibrium is in mixed strategies, and the functions  ()

and  () are computed in such a way that they form an -equilibrium18 with  = 10−6.
Bidding behavior by a bidder with a value close to zero can be described as follows. The

probability that he outbids two competitors is negligibly small compared to outbidding only

one. Therefore, his bidding strategy is based on outcompeting only one bidder. Consequently,

the auction game for a low-valuation bidder is like a single-object first-price sealed-bid auction

with one competitor, where bidding half of his value is an equilibrium strategy. Bidding

behavior by a bidder with a value close to one is more interesting. He is very likely the highest

bidder for the object for which he bids  (1) ≈ 04, and this ensures him a relatively large

surplus. Nevertheless, he submits a significantly lower bid  (1) ≈ 03 for the other object in
the hope of getting it cheaper.

Observe that  () contains a kink at  ≈ 0633. The reason that there is a kink in

 () is the following. Let us have a look at a bidder with  = 080. His high bid is always

higher than the low bid of the highest value bidder ( = 1). For a bidder with for example

 = 040 this is not the case. The kink is exactly at the level  for which  () =  (1). This

kink of  () causes a kink in the derivative of 
 () and, therefore, it causes a discontinuity

in its second-order derivative. This discontinuity, in turn, causes a kink in the derivative of

 (), and, therefore, it causes a kink in the second derivative of 
 (). This latter kink,

in turn, causes a discontinuity in the third-order derivative of  (), and so on, ad infinitum.

It makes numerical calculations of the bidding functions unstable and complex.

Let the bidders’ values be 1  2  3. In equilibrium, due to bids’ monotonicity, the

highest-value bidder always gets an object, as  (1)  max
¡
 (2)  

 (3)
¢
. The second-

18 In an -equilibrium, no player can unilaterally increase his profit by more than ; see Radner (1980).
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highest-value bidder, however, gets the other object only if his bid for this (second) object is

higher than the bid of the third, the least-value bidder. With probability 1/8, bids  (1),

 (2), 
 (3) will be placed on the second object. With probability approximately 34.5%,

bidders’ values satisfy  (3)   (1)   (2). Thus, with probability approximately 4.3%,

the third bidder gets the second object, which is inefficient.19 N

4.4 Concluding Remarks

In this paper, we show that simultaneous pooled auctions with multiple bids and preference

lists, where single-object demand bidders are allowed to make separate bids for each object

and submit a preference list to rank these objects, never have efficient equilibria unless objects

are sufficiently heterogeneous and the number of bidders is small. In so far as efficiency of

auctions’ outcome is an important consideration for governments — and which government

would ever want to openly deny that this is the case? — the paper shows that this type of auc-

tion format, i.e., a multiobject sealed-bid auction with right-to-choose ingredients, should not

be used (anymore).20 Other mechanisms exist that exhibit these efficiency properties (under

fairly general conditions), such as the Vickrey-Clarke-Groves mechanism, the simultaneous

ascending auction, and the ascending right-to-choose auction. In laboratory experiments,

Goeree et al. (2006) show that, when there is single object demand, the simultaneous as-

cending auction performs better with respect to efficiency than auctions with a first-price

element (like the simultaneous first-price auction, the sequential first-price auction, and the

simultaneous descending auction). As other auction formats perform better, we do not see

good economic arguments why the auctions analyzed in this paper should be used in future

allocation processes.

An interesting question about the auction format used in this paper is whether it is a

revenue maximizing (i.e., optimal) mechanism or not. In a different context where players

can get multiple objects, Armstrong (2000) shows that the revenue maximizing auction is not

efficient.

The focus of this paper has been on the efficiency of the allocation mechanism rather than

on the outcome of the allocation procedure.21 It is important to note that assigning licenses

to those who value them the most may not lead to a welfare maximizing outcome. In the

radio broadcasting context, for example, this is true when the advertising value of a listener

does not match the social value (see Anderson and Coate, 2005). Radio formats that appeal

19 If the number of bidders is larger than 3, then this probability is larger too.
20Unfortunately, the Dutch government has used this auction format again in 2007 to allocate licenses for com-

mercial radio stations (see https://zoek.officielebekendmakingen.nl/stcrt-2007-220-p8-SC82971.html) in spite of

popular scientific journal articles conveying the message of the present paper (see, e.g., Janssen and Maasland,

2003). Also the Taiwanese government used (a multi-round version of) this auction format in 2007 to allocate

Wimax licenses (see Fan, 2011).
21For an analysis to what extent the auction for commercial radio frequencies in the Netherlands in 2003 has

helped to safeguard public interests, see Maasland et al. (2005).
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only to a group of people who are not an interesting target for advertisers will not be offered

when a regular (efficient) auction is used, although from a welfare point of view it may be

desirable. Colored auctions, where a certain number of licenses is set aside for specific type of

broadcasting programs, may therefore be necessary to reach public interests.
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Chapter 5

Auctions with Flexible Entry Fees

5.1 Introduction

A relatively recent literature has studied how post-auction interactions, such as resale or future

market competition, affect bidders’ bidding behavior in auctions. One application that has

received particular attention, both in the theoretical literature and in the popular press, are

the auctions for third generation mobile telecommunication licenses around the world, which

enable the winning bidders to compete with each other by offering telecommunication services

to final consumers.1 There are now many papers studying this framework, and most of them

emphasize that common auction properties do not hold in such an environment and that

inefficient outcomes are likely to emerge.

The literature the present paper builds on studies auctions in the presence of negative

informational externalities due to future market interactions (see Jehiel and Moldovanu, 2006,

for an overview). One application of this literature (see Goeree, 2003, Das Varma, 2003, and

Moldovanu and Sela, 2003) is a single-unit auction where one object, namely a patent for a

cost reduction, is auctioned and the winner competes in the market after the auction with

all non-winners. Moldovanu and Sela (2003) who analyze aftermarket Bertrand competition

where a firm’s marginal cost is private information at the auction stage (and statistically

independent of its rivals’ marginal costs), show that standard auctions lead to inefficient

allocations when bidders’ values are strongly and negatively interdependent.2 The reasoning

why efficient equilibria do not exist is as follows. If a symmetric separating equilibrium is

played, then, on the margin, a low-cost firm expects to outbid a rival who also has a low cost,

implying that, conditional on winning, the price this firm will be able to charge in the market

(and hence its market profit) will be low. Therefore, on the margin, a low cost firm has a lower

1For easily accessible theoretical articles on the main issues involved, see Binmore and Klemperer (2002),

Börgers and Dustmann (2003), Klemperer (2002a), Klemperer (2002b), and van Damme (2002). For a popular

press article, see Klemperer (2000).
2See also Jehiel et al. (1996) and Jehiel and Moldovanu (2000) for related papers where an (informational)

externality may lead to inefficiency in standard single-unit auctions.
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willingness to pay than a firm with high cost, which can expect to charge a high market price.

Clearly, this argument cannot work in a private values model where the value conditional on

winning does not depend on rivals’ characteristics.

Goeree (2003) and Das Varma (2003) analyze a similar setting but allow for signaling

private information through the auction bid. The reason why an efficient equilibrium may

not exist in these papers is that under strategic complementarity, a more efficient firm may

understate its private information by shading its bid in order to relax market competition.

This phenomenon has been documented as a “fat cat” business strategy in Fudenberg and

Tirole (1984). Das Varma (2003) shows that the inefficiency disappears when the downstream

market becomes perfectly competitive. Katzman and Rhodes-Kropf (2008) analyze how differ-

ent bid-announcement policies affect the efficiency and revenue of an auction (see also Molnár

and Virág, 2008). In particular, Katzman and Rhodes-Kropf (2008) show that when signal-

ing reduces the revenue and threatens the efficiency due to, e.g., strategic complementarity,

auctioneers prefer auction formats that do not reveal the winning bid.

Another instance of this literature studies auctioning of multiple objects. Hoppe et al.

(2006) concentrate on auctions where bidders are ex-ante asymmetric such as in markets with

incumbents and entrants. The main insight in Hoppe et al. (2006) is that auctioning more

licenses does not necessarily induce a higher degree of competitiveness, i.e., higher market

efficiency. Janssen and Karamychev (2009) show that a negative externality (and associated

with it potential allocative inefficiency) may appear when firms differ in their attitudes toward

risk. Janssen and Karamychev (2010) show that when bidders’ types are ex-ante correlated,

efficient equilibria may fail to exist even when the negative externality is weak. The main

reason for this is that the correlation and the externality are, to a certain degree, alternative

ways to create conditions for the non-existence of monotone equilibria.

All these papers differ in many details, such as whether one or multiple objects are auc-

tioned, whether bidders are ex-ante symmetric or not, whether market demand is certain or

not, whether risk attitude plays a role, which auction format is used, etc. In all these kinds of

environments, efficient equilibria may fail to exist. In the present paper, we study a general

model that encompasses many of the environments studied in the literature. We show that

in all such environments a mechanism exists that possesses an efficient equilibrium. In this

particular mechanism, prior to the auction, bidders are asked to pay any publicly observable

sum of money they would like. We call these voluntary payments “flexible entry fees”.

The idea of a voluntary entry fee could be traced back to Maskin and Riley (1981). The

voluntary entry fee in that paper, however, is very different from our flexible entry fee. In

Maskin and Riley (1981), the auctioneer sets a fixed (inflexible) entry fee and bidders can

decide whether to pay that fee or not. The object is then allocated to the highest bidder who

has paid the entry fee, if any, and if no bidder has paid the entry fee the object is allocated

to the highest bidder. In our paper, bidders decide themselves on the amount of the entry fee
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they pay (flexibility), and the only thing the auctioneer does is that he collects and announces

the entry fees individual bidders have paid. Independent of the chosen entry fee, all bidders

participate in the auction.

The flexible entry fee gives bidders a possibility to signal their type. The incentive to

reveal their type is exactly the reason why bidders may pay a positive entry fee. Signaling

types through bidding behavior during an auction is usually detrimental to the efficiency of

the auction (see, e.g., Goeree, 2003, and Das Varma, 2003). Signaling prior to the auction, as

in our paper, turns out to have the opposite effect.

The intuition is as follows. Due to negative interdependencies, firms’ values are negatively

related to the types of other firms. For example, if firms compete à la Bertrand or Cournot

in a market after the auction and a firm’s type is its cost efficiency, a firm’s valuation for

the license, i.e., its market profit, negatively depends on the types of the firm’s competitors.

This negative interdependency creates an incentive for a firm to signal its high efficiency level

in the pre-auction signaling stage so that competitors bid lower in the auction. The more

efficient the firm, the larger its incentive to signal, as a more efficient firm wins with a higher

probability and, therefore, is willing to spend a larger part of its market profit on signaling

its type through the entry fee. Together with the fact that the market profit of this more

efficient firm is higher, this implies that the more efficient firm sets a higher entry fee, and the

equilibrium is perfectly separating. This information revelation before the auction makes the

auction efficient.3

In the main body of the paper, we show how this auction works in detail for a second-

price sealed-bid auction where bidders’ valuations negatively depend on the types of the other

bidders. For a second-price sealed-bid auction with independently distributed types, we show

that if the negative interdependencies are relatively weak, the auction with flexible entry fees

is revenue equivalent to and yields the same (efficient) allocation as the standard second-price

sealed-bid auction. If the negative interdependencies are relatively strong, the auction with

flexible entry fees remains efficient whereas the standard second-price sealed-bid auction is

known to be inefficient. When types are ex-ante affiliated and the affiliation is not too strong,

a similar result holds true, but revenue equivalence fails. It turns out that when both auctions

have an efficient equilibrium, the auction with flexible entry fees performs better in terms of

revenue. In the concluding section, we discuss whether the argument also holds true when the

externality is positive.

Another interpretation of the auction with flexible entry fees (where the monetary fees

are collected by the auctioneer) is that firms burn money or hire expensive auction experts

to signal their strength. As long as the amount of money burnt (the cost of hiring auction

experts) is either visible or made public, then this will have the same effect as flexible entry

3The importance of costly signaling to restore auction efficiency is also studied, although in a very different

context, by Schwarz and Sonin (2005).
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fees.4 Again, contrary to the common idea that exchanging information is bad (as it may

lead to collusion)5, making this kind of information public will improve the efficiency of the

auction. This signaling resolves the uncertainty firms have about each other’s signals. In this

interpretation, however, the revenue collected by the auctioneer is lower than in the standard

second-price sealed-bid auction, because a part of the revenue is either burnt or spent on

experts.

Apart from the above-mentioned literature, the paper is also related to the literature on

auctions with entry fees. Milgrom and Weber (1982) show that entry fees may lead to problems

with the existence of monotonic equilibria, and Landsberger and Tsirelson (2000) show that

with entry fees or other participation costs, monotonic equilibria become increasingly unlikely

once the number of bidders is large. These sources of inefficiency do not arise here, however,

as entry fees in this paper are flexible so that bidders can decide on the size of the fee they

would like to pay. Perry et al. (2000) analyze a two stage sealed-bid auction for a single object

where the two highest bidders of the first stage proceed to the second stage and all loosing

bids are revealed.

The rest of the paper is organized as follows. In Section 5.2, we describe the basic model

with negative externalities by means of an example. In this example, there is one object to

be auctioned, there are two bidders with private information about their types, the types are

identically and independently distributed, and the bidders have additively separable linear

valuation functions with negative interdependencies. In this basic set-up, we show that when

the negative interdependency is strong, the auction with flexible entry fees, contrary to a

second-price sealed-bid auction, always has an efficient equilibrium. Moreover, we show that in

terms of revenues the two mechanisms are equivalent when both have an efficient equilibrium.

In Section 5.3, we show that these results hold in a general setting with independent types.

Section 5.4 analyzes the case of correlated types and Section 5.5 concludes with a discussion.

Proofs are in the appendix.

5.2 The Basic Model

As an example, we consider a standard symmetric single-object second-price sealed-bid auc-

tion, from now on termed the SP-auction, where two bidders, denoted by   ∈ {1 2},  6= ,

have interdependent valuations. Bidder ’s type and his value for the object are denoted by

 and  respectively. The types of the bidders are identically and independently distrib-

uted over the interval [0 1] in accordance with a distribution function  () ≡ Pr ( ≤ ).

The values of the bidders for the object are interdependent and given by the following linear

4Klemperer (2002a) observes that in the mid nineties Pacific Telephone paid for full page ads in newspapers

and hired one of the most prominent auction theorists to give seminars, signaling that the California license

was of utmost importance to them.
5See, e.g., Grimm et al. (2003) on the role of information provision in facilitating collusion.
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valuation function:

 =  () =  −  + 

where   0 and     0, which ensures that values are positive. It is easily seen that the

values are negatively interdependent: a bidder ’s own type affects his value positively whereas

the type of his competitor has a negative effect on his value. This negative dependence reflects

the fact that often in an auction where some post-auction interaction (such as future market

competition) takes place, a bidders’ type (such as a measure of his cost efficiency) positively

affects his own value but negatively inflicts upon the value of the competitor. Moreover, it is

readily checked that auction efficiency requires the bidder with the highest type to win the

auction.

We make the usual assumptions of a game with private information, namely that a bidder’s

type is private information, i.e., bidder  knows the realization  of , the other bidder  does

not know , but he knows  and  , and all this is common knowledge. Invoking a standard

procedure, one can easily verify that

 () = (− )+ 

constitutes a unique symmetric equilibrium bidding function of the SP-auction provided that

  . This equilibrium is efficient and ensures that the bidder with the highest value makes

the highest bid and wins the object. If, on the other hand,  ≤ , the function  () decreases

so that the SP-auction does not have a monotone symmetric equilibrium. Therefore, there is

a strictly positive probability that in this case the SP-auction results in an allocation that is

inefficient.

The non-standard feature of the mechanism that we consider is that prior to the auction,

each bidder decides on an amount  ≥ 0 that he voluntarily pays to the seller before par-
ticipating in the auction. We call this  a flexible entry fee and it is important that this 

is public information before the auction takes place so that bidders can update their beliefs

about their competitor’s type before the auction starts. We refer to the second-price sealed-bid

auction with flexible entry fees as the FEF-auction.

The timing of the game is as follows. In the first stage, after nature assigns types to bidders,

both bidders simultaneously submit payments  ≥ 0 to the auctioneer. These payments are
publicly observed. In the second stage, the bidders participate in a second-price sealed-bid

auction where they submit bids  ≥ 0, and the bidder with the highest bid gets the object
and pays a price that is equal to the second highest bid, which in the case of  = 2 is also the

lowest bid. In case of a tie (which will not happen in equilibrium with positive probability),

an arbitrary tie-breaking rule applies. Importantly, only the bids made during the auction

(and not the entry fees paid) determine the allocation of the object.

We use Weak Perfect Bayesian Equilibrium, WPBE hereinafter, as the equilibrium con-
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cept.6

Definition 5.1 A symmetric WPBE of the FEF-auction consists of a strategy and beliefs

such that:

1. the strategy of bidder  of type  is a pair of functions,  = ∗ () and  = ∗ (  ),
where  = ∗ () is the entry fee chosen, and ∗ (  ) is the bid when  and  are
the chosen entry fees;

2. the belief of bidder  is the conditional probability distribution

∗ ( |   ) ≡ Pr ( ≤  | =    ) of the competitor’s type  , conditional

on , , and  ;

3. strategies are optimal given the strategy of the other bidders and beliefs;

4. beliefs are generated by Bayes’ rule on-the-equilibrium path.

It is easy to see that  () is also an equilibrium of the FEF-auction, i.e., if   , then

∗ () = 0, ∗ (  ) =  (), and naive beliefs ∗ ( |   ) =  () on- and off-the-

equilibrium path, constitute a symmetric equilibrium of the FEF-auction. The reason is as

follows. In such a pooling equilibrium, the entry fees that bidders choose are all zero and do

not contain information on their types. Consequently, the bids are solely based on a bidder’s

own type. On the other hand, if the bidders anyway do not adjust their bids depending on

which entry fees are paid, then there is no point in paying a positive entry fee.

In addition to the pooling equilibrium (which only exists if   ), there is another sym-

metric WPBE of the FEF-auction, which is perfectly separating and which always exists. In

this equilibrium, bidders choose positive entry fees in accordance with the following increasing

and continuously differentiable function:7

 () = 

Z
0

 () =  [−(|  )] () (5.1)

For convenience, we define its generalized inverse function for non-negative values of  as

follows:

() = max{ :  () ≤ } (5.2)

In other words, if  ∈ £0  (1)¤ then () is the type which pays entry fee  :  (()) =
. If, however,    (1) then () is defined by () = 1. The function () represents

6A WPBE is the same as a perfect Bayesian equilibrium, with this difference that it does not impose

restrictions on out-of-equilibrium beliefs. See, e.g., Mas-Colell et al. (1995), p. 285.
7 In the next section, we comment on the interpretation of this expression for the entry fee.
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bidders’ beliefs:

 (|  ) =

⎧⎪⎪⎨⎪⎪⎩
1 if  ≥  ()

0 if    () 

(5.3)

In other words, having observed an entry fee  of bidder , bidder  believes that bidder  is

of type  =  () with probability one:

Pr( = ()| = ) = 1

It is easy to see that along the equilibrium path, the belief satisfies Bayes’ rule.

In the second stage, bidder  bids his value given his belief:

 =  (  ) =  −  () +  (5.4)

We will now argue that (5.1), (5.2), (5.3), and (5.4) constitute a WPBE. It is clear that if

it is an equilibrium, it is efficient as the highest type bidder submits the highest bid and

gets the object. Due to full information revelation in the first stage, beliefs are degenerate

in the second stage, and bidding one’s own valuation is an optimal action in the second-price

sealed-bid auction. Hence, bidders do not have a profitable deviation away from bidding

 (  ).

We now concentrate on the optimality of paying the flexible entry fee specified in (5.1). If

a bidder  of type  sets entry fee  (), as if he were of type , then he wins the object

(neglecting ties) if the type of the other bidder  satisfies


¡
  ()   ()

¢
 

¡
  ()   ()

¢


which can be written as −  +    −  +  or

 
+ 

+ 


If this is the case, bidder  wins the object at auction price

 = 
¡
  ()   ()

¢
=  −  + 

and has valuation  ( ) =  = −+. The expected profit of bidder  is therefore given

by

 ( ) ≡ − () +
(+)(+)Z

0

((−  + )− ( −  + ))  ()
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which can be rewritten as follows, by using (5.1) and integrating by parts:

 ( ) = −
Z
0

 ()  +

(+)(+)Z
0

((−  + )− ( −  + ))  ()

= −
Z
0

( − )  () + 

(+)(+)Z
0

( − )  () + 

(+)(+)Z
0

(− )  ()

= 

(+)(+)Z


( − )  () + 

(+)(+)Z
0

(− )  ()

Setting the entry fee equal to  () is optimal because

 ( )−  ( ) = 

Z
−(−)(+)

(− )  () + 

+(−)(+)Z


( − )  ()  0

for all  6= . Thus, there is no profitable deviation from  (), which is lower than

 (1). Also, choosing a fee above  (1) is strictly suboptimal, given the proposed

beliefs off-the-equilibrium path. Indeed, setting any entry fee    (1) induces the same

belief of bidder  as entry fee  =  (1):  () = 1. Thus, raising the entry fee above

 (1) neither affects the bid of bidder  (and thus the price to be paid if bidder  wins),

nor the winning probability of bidder . It only increases his own expenses and is, therefore,

strictly suboptimal. Thus, no bidder has an incentive to deviate from  ().

In fact, any off-the-equilibrium belief supports the equilibrium strategy  () and

 (  ). Indeed, with any other off-the-equilibrium path beliefs different from  ,

bidder  puts some positive probability that the deviating bidder  is of type   1, whereas

 puts zero probability on this event. As a result, the expected value of bidder  and,

therefore, his bid, is strictly higher than with the equilibrium belief  , which assigns

 = 1 with probability one. This implies that setting    (1) is even less attractive for

bidder  if the belief of bidder  differs from  . Therefore, any belief supports the strategy

 () and  (  ) as a WPBE. The fact that off-the-equilbrium path beliefs may

also be determined by Bayes’ rule implies that the equilibrium strategies of the separating

WPBE form a perfect Bayesian equilibrium.

Thus, and this is the main point of the example, the FEF-auction has an efficient equilib-

rium for all values of the parameters ,  and . Moreover, the FEF-auction is never worse (in

terms of efficiency) than the SP-auction and is strictly better for some values of the parameters

(in particular when  ≤  and the SP-auction is inefficient).

Interestingly, for the case where    and both the SP-auction and the FEF-auction have



5.2 The Basic Model 133

efficient equilibria, they generate equal revenues. In the SP-auction, the revenue comes solely

from bids:

 = 
¡
 (min {12})

¢
=  ( ( ) | = min {12})

= 2

1Z
0

Z
0

( −  + )  ()  ()

= 2 (− )

1Z
0

Z
0

  ()  () + 

In the FEF-auction, to the contrary, a part  of the revenue comes from collecting the

entry fees:

 = 2
¡
 ()

¢
= 2

1Z
0

 ()  () = 2

1Z
0

Z
0

 ()   ()

and integrating by parts yields:

 = 2

1Z
0

Z
0

 ()   () = 2

1Z
0

Z
0

 (− )  ()  ()

The remaining part  of the revenue stems from the bids made:

 = 
¡


¡
  ()   ()

¢ | = min {12}   = max {12}
¢

= 2

1Z
0

Z
0

 ( )  ()  ()

= 2

1Z
0

Z
0

( − )  ()  () + 

It can easily be verified that + =  , so that revenue equivalence holds. The

intuition for this revenue equivalence is that both auctions are efficient, the lowest type gets

zero expected profit, and types are statistically independent, and, consequently, the expressions

for revenues in these two auctions are identical.

The fact that the second highest bidder, i.e., the bidder whose bid is relevant for the

auction payment, in the FEF-auction shades his bid relative to the bid he would make in the

SP-auction follows from (5.4). Knowing that his competitor has a higher type (as  ()  )

makes bidder  bidding less ( =  −  () + ) than he would have bid in the SP-
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auction ( =  −  + ) where he would have bid an amount as if his competitor were

of the same type .

As all bidders have to pay the entry fee they have proposed, it is clear that the winner of the

auction is better off in the FEF-auction and all non-winners are worse off. In other words, from

the perspective of a bidder of a given type, the FEF-auction provides higher pay-off in case he

wins, and lower pay-off in case he loses, than the SP-auction. At the same time, both auctions

yield equal expected surplus to the bidder. This implies that, from the bidders’ perspective, the

FEF-auction is riskier than the SP-auction. This consequently suggests that, with risk-averse

bidders, the FEF-auction raises higher revenue than the SP-auction (as risk-averse bidders are

willing to pay a higher risk premium in a riskier auction).8

A natural question that arises is why bidders want to pay a positive entry fee. The reason

is that, although the entry fee is sunk at the moment of the auction, entry fees signal bidders’

types thereby affecting each other’s bids in a desirable way: bids get lower when entry fees

increase. By raising the entry fee, a bidder reduces the bid of his competitor and, therefore,

lowers the price to be paid in case he wins the object.

We conclude that the FEF-auction yields the same outcome in terms of efficiency and

revenue as the SP-auction when the latter has an efficient equilibrium, but retains the property

of efficiency for parameter values where the SP-auction does not have an efficient equilibrium.

5.3 The General Model with Independent Types

The example in the previous section was special in a number of ways: the valuation function

was supposed to be linear in the bidders’ types, the analysis was restricted to two bidders and

one object, and the types were supposed to be independently distributed. In this section, we

first relax the first two assumptions and show that they are not essential to the argument.

Section 5.4 analyzes the effect of allowing bidders’ types to be correlated. We will see that in

that case the argument can only be extended by allowing weak forms of affiliation.

Consider a standard symmetric multi-unit uniform-price auction where  ≥ 2 bidders

with unit demand, denoted by subscript , compete for  ≥ 1 homogeneous objects,    .

Bidders’ types  are identically and independently distributed over the interval [0 1] in

accordance with a distribution function  (). The values of the bidders for the objects are

interdependent and given by the following valuation function:

 =  (X−) 

where X− is a collection of types of all bidders other than . We assume that  (X−) is
symmetric in all  ∈ X−, differentiable on [0 1] , and   0   , , there is

8We like to stress here that this is just a conjecture.
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a negative externality.9

In the FEF-auction, bidders simultaneously choose and publicly pay entry fees  and then

simultaneously submit auction bids . The  bidders who have submitted the  highest

bids get the objects and pay the auction price, which is equal to the ( + 1) highest non-

winning bid. We denote the equilibrium bidding function by  =  (  e−), where
e− is a collection of entry fees chosen by all bidders other than , and consider symmetric

equilibria where  (  e−) is symmetric in all  ∈ e−. The belief of bidder  is the
joint probability distribution of its competitors’s types X− conditional on the information
available to bidder : ∗ (y−| e− ) ≡ Pr

³
 ≤ 


| =  e−

´
.

Suppose that a bidder ’s type  takes a value . We denote the bidder with the 


highest type amongst all  − 1 other bidders (all bidders except bidder ) by  so that his

type is . Excluding bidders  and , we refer to all − 1 remaining bidders of types   

by subscript  ∈W (they all win the auction and get objects), and we refer to all  − − 1
remaining bidders of types    by subscript  ∈ L (they all lose the auction). If  = 1

thenW = ∅, and if  = + 1 then L = ∅.
We define a function ̂ (  ) as the expected value of a bidder  of type  =  conditional

on (i) one of his competitors, bidder , being of type  = , (ii) − 1 bidders  ∈W being

of type   , and (iii)  − − 1 bidders  ∈ L being of type   :

̂ (  ) ≡  ( (X−) | =  =      ) 

where the expectation is taken with respect to − 1 random variables  and  − − 1
random variables .

The main proposition of this paper demonstrates that the FEF-auction always has an

efficient, i.e., a perfectly separating, monotone, and symmetric, WPBE.

Proposition 5.1 There exists an efficient WPBE of the FEF-auction, where bidders choose

an entry fee according to

 () =

Z
0

(̂ (  )− ̂ (  ))  ()

and bid according to

 (  e−) =  (h (e−)) 

where the components of h (e−) are  () = max
©
 :  () ≤ 

ª
, and beliefs are given

9 In some settings, it is more realistic to assume that values only depend on the types of the winning bidders,

e.g., when auction winners compete with each other in an after-market. The analysis tolerates such a setting

quite easily.
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by

 (y−|  e− ) =

⎧⎪⎪⎨⎪⎪⎩
1 if  ≥  () for all  6= 

0 otherwise.

In equilibrium, higher types pay a higher entry fee in the first stage. By inverting the

entry fee function, the bidders hold degenerate beliefs: they know exactly the types of their

competitors. In the second stage, all bidders bid their expected values given beliefs, i.e., they

bid their true values on the equilibrium path. The inverse h (e−) is constructed in such a
way that when bidders observe a too high entry fee  

 (1), they belief that  = 1

with probability one. Proposition 5.1 shows that all the properties of the unique monotone

symmetric perfectly separating WPBE presented in the example of Section 5.2 continue to hold

for an arbitrary valuation function which exhibits a negative externality, and for an arbitrary

number of objects and bidders. As in the example, bidders’ off-the-equilibrium path beliefs

do not play an important role here as any belief supports the separating Bayesian equilibrium

strategies as WPBE.

It is interesting to interpret the entry fee. Let bidder  have the same type as bidder ,

i.e.,  =  = . Then, the valuation of bidder  is ̂ (  ). Hence, by having value  = ,

bidder  imposes a negative externality of size ̂ (  ) − ̂ (  ) on bidder  by reducing

his value by that amount. This externality only realizes when bidder  wins and bidder  does

not win, i.e., when   . Therefore, from bidder ’s perspective, the entry fee  () he

pays is the expected externality he imposes on the marginal bidder . Thus, flexible entry

fees allow bidders to internalize the negative externality they impose on each other so that

the externality does not affect the monotonicity property of bidders’ bids. Hence, an efficient

equilibrium always exists. This is the crucial difference between the entry fee chosen by the

auctioneer (including the case of a voluntary entry fee à la Maskin and Riley, 1981) and flexible

entry fees chosen by bidders themselves.

In case ̂ (  ) is an increasing function of , the FEF-auction also has a pooling equi-

librium that coincides with the equilibrium of the SP-auction, where all bidders choose an

entry fee of zero and bid their expected valuation in case they are uncertain about their com-

petitors’ types, i.e., ∗ () = 0 and ∗ (  e−) =  () = ̂ (  ), and beliefs are the

prior beliefs ∗ (Y−| e− ) =
Q

 6=  (). Contrary to the separating equilibrium, the
pooling equilibrium requires specific beliefs off-the-equilibrium path. The revenue generated

in the separating equilibrium is equal to the revenue generated in the SP-auction as revenue-

equivalence holds. In case ̂ (  ) is not monotonically increasing, the SP-auction does not

have an efficient equilibrium and, therefore, its outcome is inefficient with positive probability.

These results are summarized in the next proposition.

Proposition 5.2 The SP-auction has an efficient equilibrium if and only if ̂ (  ) is an

increasing function of x. If ̂ (  ) is an increasing function of x,  () = ̂ (  ), and
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the SP-auction raises the same expected revenue as the separating equilibrium of the FEF-

auction.

5.4 Correlated Types

We now generalize our example of Section 5.2 to an environment where bidders’ types are

positively correlated, provided the correlation is not too strong. It is clear that positive

correlation of types reinforces the negative externality so that an efficient equilibrium of the

SP-auction is even less likely to exist (see also, e.g., Janssen and Karamychev, 2010). The

reason is as follows. A first effect of a bidder’s type is that a high type bidder has a higher

value than a low type bidder, for the same fixed types of their competitors. This first, direct

effect is positive. However, due to positive correlation, a high type bidder expects competitors

to be of higher types than a low type bidder expects them to be. This creates a second,

indirect effect, on the value, which is negative. When the correlation is strong, the second

effect dominates the first one so that the ex-ante expected value of a bidder conditional on

winning is not a monotonically increasing function of his type. Consequently, as his bid in the

SP-auction is his expected value, a monotone bidding equilibrium fails to exist.

In our model where signaling is allowed, if bidders’ types are strongly correlated bidders do

not have an incentive to signal their types by paying a (high) entry fee as the other bidders can

anyway infer someone’s type once they have observed their own type. Therefore, an efficient

equilibrium of the FEF-auction only exists if the correlation is not too strong.

To study the effects of correlation we consider for simplicity the two-bidder setting of

Section 5.2. Suppose bidders’ types are weakly affiliated and the distribution function of 

conditional on =  is  ( |) ≡ Pr ( ≤  | = ), the density is  ( |), and  ( |) ≡
 ( |)  ≤ 0, i.e., there is affiliation. Let the value function be  () = −+.

We consider situations where

 (|) ≥ 

µ
+ 

+ 

¯̄̄̄


¶
for    and  (|) ≤ 

µ
+ 

+ 

¯̄̄̄


¶
for    (5.5)

for all ,  ∈ [0 1]. When types are independent, condition (5.5) is always satisfied. When
 and  are affiliated and   , the distribution  (|) stochastically dominates  (|)
so that  (|)   (|). Hence, (5.5) is only satisfied when the affiliation is weak. On

the other hand, for a given distribution with affiliation, (5.5) is never satisfied for  = 0,

which corresponds to the limiting case of an externality that is extremely strong. Hence, (5.5)

assumes both a relatively weak affiliation of types and a weak externality.

The following proposition shows that condition (5.5) guarantees the existence of an efficient

WPBE of the FEF-auction.
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Proposition 5.3 Consider the case where  = 2 and the value function is linear and given

by  () = −+. If (5.5) holds (sufficient condition), then the strategy consisting

of an entry fee  () and bids  =  (  ) with  () = 
R
0

 (| )  and
 (  ) =  −  () +  where  () = max

©
 :  () ≤ 

ª
and beliefs

 ( |   ) =

⎧⎪⎪⎨⎪⎪⎩
1 if  ≥  ()

0 if    () 

constitute an efficient WPBE of the FEF-auction. This WPBE only exists if (necessary con-

dition)


+ 
 (|) +  (|) ≥ 0

The argument made in the proof of Proposition 5.3 is similar to the one made in Section

5.2 and replaces the unconditional distribution function used there by the conditional distrib-

ution function and then shows that the argument can be extended by allowing weak forms of

affiliation of the type that satisfies (5.5).

In equilibrium, bidders bid their values in the second stage. In the first stage, they pay

entry fees that are increasing in types. Condition (5.5) guarantees that there is no profitable

deviation from  (), i.e., it is essentially a (global) sufficient second-order condition that

ensures that further deviations are even less profitable than smaller deviations. The necessary

(local) second-order condition for the FEF-auction to have an efficient equilibrium can be

obtained from (5.5) by taking a limit when  and  converge to each other.

In accordance with Proposition 5.3, the FEF-auction does not have an efficient separating

equilibrium when the correlation and the externality are strong. Nevertheless, the FEF-auction

can have an efficient pooling equilibrium, which is an efficient equilibrium of the SP-auction if

it exists. Thus, the FEF-auction is at least as efficient as the SP-auction, and sometimes it is

strictly more efficient.

In the case of affiliation, we may also wonder how revenues under the efficient equilibrium

of the SP-auction and the efficient equilibrium of the FEF-auction compare. To make the

comparison useful, we have to consider situations where both equilibria exist, and therefore

we restrict the analysis to the case where (5.5) holds and, in addition,    so that the SP-

auction has an efficient equilibrium. It is straightforward to show that the efficient equilibrium

of the SP-auction is given by  () =  ( ) = (− )+ . The next proposition shows

that the FEF-auction generates larger revenues than the SP-auction.

Proposition 5.4 Consider the case where  = 2 and the value function is linear and given

by  () = − +      and  are affiliated, and (5.5) holds. Then, revenue

in the FEF-auction is strictly higher than in the SP-auction.
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In the FEF-auction, the revenue does not only come from the winning bid and the entry fee

paid by the winning bidder, but also from the entry fees paid by all other bidders. Therefore,

the Linkage (Revenue Ranking) Principle (cf. Krishna, 2002, p. 103) cannot be applied, and

the revenue has to be computed and compared with the revenue in the SP-auction directly.

It turns out that the FEF-auction better exploits the correlation of bidders’ types from the

perspective of the auctioneer and results in a higher revenue.

5.5 Discussion and Conclusion

In this paper, we have argued that by allowing bidders to make flexible, publicly observable

payments before they enter an auction, the effect of negative externalities, which have played

an important role in the recent literature on auctions with post-auction interactions, can be

mitigated. The literature has stressed that if the negative externalities are strong enough,

auctions may not yield an efficient allocation of the object(s). We have argued that asking

for a flexible entry fee restores efficiency, and in case of affiliated types brings about a higher

revenue. Important to note here is that this argument can be generalized to settings with

asymmetric bidders, e.g., to bidders with different valuation functions and different distribu-

tions of bidders’ types. The reason is that in a separating equilibrium bidders just bid their

true values irrespective of whether there are asymmetries between them or not.

We have considered second-price sealed-bid auctions (and auctions that are strategically

equivalent) and one may wonder what the results may be if a first-price sealed-bid auction is

considered. It is easy to see that a perfectly revealing equilibrium may not exist in a first-price

sealed-bid auction with negative externalities. This can best be seen in the two bidder case. If

such an equilibrium had existed, the bidder with the highest type would have bid marginally

higher than the other bidder who, in turn, would have bid his true value. This outcome is,

however, prone to the following deviation. By setting his entry fee equal to zero, bidder one

ensures that the other bidder believes in winning the auction. As a result, bidder two will not

bid his own value but will bid the value of the first bidder conditional on his type being zero,

which is lower. Hence, by setting his entry fee equal to zero, bidder one lowers the bid function

of bidder two and wins the object with certainty. Besides, he saves on the entry fee. This

makes the deviation profitable for highest types, and the corresponding separating equilibrium

fails to exist. Thus, the second-price feature is important for obtaining the separating result

we emphasize in this paper.

We have made the argument in this paper by considering negative externalities. It is easy

to see that a perfectly revealing equilibrium never exists in a second-price sealed-bid auction

with positive externalities. The reason bidders are willing to pay an entry fee in a setting

where externalities are negative is that this has a negative impact on the expected valuation

of the other bidders, hence on their bids, and thereby on the price that bidders have to pay for
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the object in case they win the auction. Under positive externalities, to the contrary, bidders

are willing to signal that their types are the lowest possible types as this has a negative impact

on the expected valuation of the other bidders, hence on their bids, and thereby on the price

that bidders have to pay for the object in case they win the auction. Consequently, if the

externality is positive only pooling equilibria exist, in which bidders do not pay an entry fee

and then play the standard second-price sealed-bid auction. The type of applications that

motivate this paper, however, like auctions with Cournot and Bertrand type of competition

in the downstream market are all examples where negative externalities are present.

In summary, we have shown that if the auction itself is efficient, the efficiency of the auction

will not be affected (degraded) by the introduction of flexible entry fees. If the auction is, to

the contrary, inefficient, then the introduction of flexible entry fees might restore the efficiency

of the auction by allowing bidders to signal their type prior to the auction.

To our knowledge, auctions with flexible entry fees have not yet been used in practice.

Firms hiring expensive auction consultants or burning money in public (such as large and

seemingly useless advertisement campaigns) to signal their strength does have the same effect

as flexible entry fees though. If we reinterpret entry fees in this way, then this ‘new’ mechanism

has been in place for a long time.

The reader should be aware that no policy recommendations can be derived on the basis

of this paper alone, because the theory exposited in this chapter may not capture practice

completely. One crucial assumption of our model is that firms behave competitively (do not

collude). In practice, however, pre-auction signaling may encourage collusion. For instance,

a firm may burn a lot of money hiring a very expensive consultant not (primarily) to signal

its type but to signal that it cannot easily be outcompeted, and that it may be a better idea

for every firm involved to split the market at low prices. Another assumption of our model

is that bidder participation is independent of the auction format. In practice, this might not

be the case.10 An auction with a pre-auction signaling phase may, for example, encourage

predatory behavior and/or joint bidding resulting in a reduction in the number of bidders.

Theory should therefore be combined with empirical analysis (of field data, or experimental

data) before judgments can be made which auction mechanism performs best under what

circumstances.

An important message we want to convey with this chapter is that the auction itself is part

of a larger game. The auction does not start in the auction room but way earlier. Prior to

the auction, firms may have an incentive (due to what will happen after the auction) to burn

money to signal their strength. The amount of money spent by firms to acquire licenses might

thus be far larger than only the amount of money paid to the auctioneer. Thus by focussing

only on the auction one may draw the wrong conclusions.

This insight might have huge consequences for structural econometric research in auc-

10See, e.g., Athey et al. (2011), for an example that the choice of the auction format can have significant

effects on bidder participation.
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tions.11 Structural econometricians estimate causal relations between signals (a bidder’s type)

and bids, and therefore between the distributions of signals and bids. The bid data used are

the data from the auction itself. Bids made in a possible pre-auction phase are not taken into

account. By discarding the bids from the pre-auction phase, the estimation of the functional

relationship will be incorrect.

Several lines of further research can be suggested. First, we may allow for a timing aspect

in the pre-auction signaling phase (thus dropping the assumption that firms burn money

simultaneously). Asymmetric equilibria should in that case be considered. We expect the

bidder with the highest type to signal first (as he has the largest incentive). It will be interesting

to see whether all bidders will have an incentive to signal. After having seen the amount of

money burnt by the higher type bidders, lower type bidders may not have an incentive anymore

to burn money themselves. Second, as signaling prior to the auction may raise credibility issues

in certain instances (in practice), it is interesting to examine whether qualitatively similar

results will be obtained when the pre-auction signaling phase is charaterized by a cheap talk

model (instead of a money burning model).

5.6 Appendix: Proofs

Proof of Proposition 5.1. First, it is easy to see that  () is a strictly increasing

function so that the proposed WPBE is perfectly separating:




 () = −

Z
0

µ



̂ (  )

¶
 () = −

Z
0

µ
̂


(  )

¶
 ()  0

due to ̂  0 as being the conditional expectation of   0.

Suppose all bidders except bidder  have beliefs  and follow the proposed WPBE

strategy. In this case, each bidder  sets entry fee  =  () ≤  (1) and, therefore,

bidder  correctly infers the type of all other bidders on-the-equilibrium path by using the

inverse function  () =  . Irrespective of the chosen entry fee , bidding his exact value

 =  (h (e−)) in the second stage is optimal for bidder , just like in the SP-auction.
Thus, bidder  has no profitable deviation from bidding  (  e−) =  (h (e−)). In
the rest of the proof, we show that bidders do not benefit by deviating from  () for the

proposed on- and off-the-equilibrium path beliefs.

For notational convenience, we will write the collection of types other than  as X− =
(X−) referring to the type of a given bidder . By ̂ (x− | ) we denote the joint
distribution function of X− conditional on the event      for all other winning

bidders  ∈ W and losing bidders  ∈ L. Using this notation, ̂ (  ) can be written as
11See, e.g., Hendricks and Porter (2007) for a survey on structural econometric methods.
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follows:

̂ (  ) =

R

==

 (X−)
Q
 6=
 6=

 ()

R

==

Q
 6=
 6=

 ()
=

Z


 ( (X−)) −2̂ (x− | )

Suppose bidder  of type  sets entry fee  =  () as if he were of type  ∈ [0 1], and
all other bidders  follow the equilibrium strategy. Bidder  wins and gets the object if and

only if his bid  is higher than bid  of bidder . Denoting  =  and taking into account

that  =  ( (X−)) and  =  ( (X−)), we write    as  ( (X−)) 
 ( (X−)). If  ( (X−))   ( (X−)), bidder  pays the auction price  and
gets surplus

 (  X−) ≡  −  =  ( (X−))−  ( (X−)) 

If  ( (X−))   ( (X−)), bidder  does not get the object. The expected surplus
̂ ( ) of bidder  conditional on winning is

̂ ( ) ≡  ( (  X−) | (  X−)  0) 

where the expectation is taken with respect to  and X−. Bidder ’s ex-ante surplus is,
therefore,

 ( ) ≡ − () + Pr ( (  X−)  0) · ̂ ( ) 

We will show that  ( )  0 for all    and  ( )  0 for all   , which implies

that  ( ) attains its unique global maximum w.r.t.  at  = .

First, we note that    is equivalent to  ( (X−))   ( (X−)) for any realiza-
tion of X−. This is so because the right-hand side is strictly decreasing in  and equals the

left-hand side at  = . This allows us to rewrite  () as follows:

 () =

Z
0

(̂ (  )− ̂ (  ))  ()

=

Z
((:X−))((:X−))

(̂ (  )− ̂ (  ))  ()

Next, we write

̂ (  ) =

Z


 ( (X−)) −2̂ (x− | )
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and

̂ (  ) =

Z


 ( (X−)) −2̂ (x− | )

Hence,

 () =

Z
((:X−))((:X−))



[ ( (X−))−  ( (X−))] −2̂ (x− | )  ()

=

Z
(x−)0



 (  x−) −2̂ (x− | )  () 

In a similar fashion, we rewrite  ( ):

 ( ) = −
Z

(x−)0


 (  x−)  () −2̂ (x− | )

+

Z
(X−)0



 (  x−)  () −2̂ (x− | ) 

Under our assumptions on  and  ,  ( ) is differentiable. By taking the partial derivative

of  ( ) w.r.t. , we have to consider variations of the integrands and of the domains of

integration, i.e., variations of the sets of the values of  and X− where  (  x−)  0

and  (  x−)  0. Due to the continuity of  (  X−), all variations of domains
happen at  = 0 and do not contribute to  ( ). Thus,

 ( ) = −
Z

(x−)0





 (  x−)  () −2̂ (x− | )

+

Z
(X−)0






 (  x−)  () −2̂ (x− | )

Next, using the definition of  (  X−) and writing  ≡  yields:

 ( ) =

Z
(x−)0



 ( (x−))  () −2̂ (x− | )

−
Z

(X−)0


 ( (x−))  () −2̂ (x− | )
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Then, using the following chain of the equivalence relations

 (  x−)  0⇔  ( (X−))   ( (X−))⇔   

⇔  ( (X−))   ( (X−)) 

we rewrite  ( ) as follows:

 ( ) =

Z
((:X−))((:X−))



 ( (x−))  () −2̂ (x− | )

−
Z

((:X−))((:X−))


 ( (x−))  () −2̂ (x− | ) 

Suppose now that   . This implies  ( (X−))   ( (X−)) so that we can rewrite
 ( ) as follows:

 ( ) =

Z
((:X−))((:X−))((:X−))



 ( (x−))  () −2̂ (x− | )

+

Z
((:X−))((:X−))((:X−))



 ( (x−))  () −2̂ (x− | )

−
Z

((:X−))((:X−))


 ( (x−))  () −2̂ (x− | )

The first term cancels the third term so that

 ( ) =

Z
((:X−))((:X−))((:X−))



 ( (x−))  () −2̂ (x− | )  0

The last inequality follows from (i) the integrand which is strictly negative (  0) and (ii)

from the domain of integration which is not empty. It is not empty because for  =   :

 ( (x−)) =  ( (x−))   ( (x−)) 

and for  marginally lower than :

 ( (x−))   ( (x−)) 

Since  ( )  0,  ( )   ( ) for all   . Thus, choosing    is not a profitable
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deviation.

Similarly,    implies  ( (X−))   ( (X−)) so that we rewrite  ( ) as
follows:

 ( ) =

Z
((:X−))((:X−))



 ( (x−))  () −2̂ (x− | )

−
Z

((:X−))((:X−))((:X−))


 ( (x−))  () −2̂ (x− | )

−
Z

((:X−))((:X−))((:X−))


 ( (x−))  () −2̂ (x− | )

which yields:

 ( ) = −
Z

((:X−))((:X−))((:X−))


 ( (x−))  () −2̂ (x− | )  0

Hence, neither    is a profitable deviation.

On the other hand, setting fee  above 
 (1) is strictly suboptimal for the given off-

the-equilibrium path beliefs as it affects neither the bid of the other bidders, nor the winning

probability of bidder , nor the auction price bidder  pays if he wins. It only increases

expenses and, therefore, is strictly suboptimal. Thus, no bidder has incentives to deviate from

equilibrium fee  (). ¥

Proof of Proposition 5.2. Let bidder  of type  =  bid  () in the SP-auction, where

 () is a monotonically increasing symmetric equilibrium bidding function. Then, bidder

 has expected value ̂ (  ) and wins if and only if he outbids the bid  () of bidder 

with type  = . The expected profit of bidder  is, therefore,

 ( ) =

Z
0

¡
̂ (  )−  ()

¢
 ()

Maximizing  ( ) w.r.t.  yields the necessary first-order condition:

 () = ̂ (  ) 

which must hold for  = . Thus, if such an equilibrium does exist, it must be  () =

̂ (  ).
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Suppose now that all bidders follow  () = ̂ (  ). Then

 ( ) =

Z
0

(̂ (  )− ̂ (  ))  ()

It can be easily seen that  =  is a global maximum of  ( ) w.r.t.  because

 ( ) = (̂ (  )− ̂ (  ))  ()  0

for    and  ( )  0 for   . Hence,  () = ̂ (  ) is a unique monotonically

increasing symmetric equilibrium, provided ̂ (  ) monotonically increases in .

The revenue raised in the SP-auction can be written as follows:

 = 
¡
 () |      

¢
= 

1Z
0

⎛⎝ Z
0

 ()  ()

⎞⎠  ()

= 

1Z
0

Z
0

̂ (  )  ()  () 

In the FEF-auction, a part  of the revenue comes from collecting the entry fees:

 =  · ¡ ()
¢
= 

1Z
0

Z
0

(̂ (  )− ̂ (  ))  ()  ()

The remaining part  of the revenue stems from the bids made:

 = 
¡
 (  e−) |      

¢
=  ( ( (X−)) |       )

= 

1Z
0

Z
0

 ( ( (X−)) |   =    =    )  ()  ()

= 

1Z
0

Z
0

̂ (  )  ()  () 

As  + =  , revenue equivalence holds. ¥

Proof of Proposition 5.3. First, it is easy to check that  () strictly increases:




 () =  (|)  0
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This implies that  () = max
©
 :  () ≤ 

ª
is a proper inverse function, which leads to

the Bayesian beliefs 
³
 | 

´
on-the-equilibrium path.

Second, bidding one’s own valuation is optimal given beliefs. In the rest of the proof,

we show that bidders do not benefit by deviating from  () for the proposed on- and

off-the-equilibrium path beliefs.

If bidder  of type  sets entry fee  (), his expected profit  ( ) is

 ( ) ≡ − () +
(+)(+)Z

0

(−  −  + )  (|)

= −
Z
0

 (| )  + (+ )

(+)(+)Z
0

 (|)  

Hence, if  ( ) ≤  ( ) for all  bidder  has no incentives to deviate from  ().

Differentiating  ( ) w.r.t.  yields:

 ( ) = −
µ
 (| )− 

µ
+ 

+ 

¯̄̄̄


¶¶


Under the assumption of the proposition,  ( ) ≤ 0 for    and  ( ) ≥ 0 for  ≤ , so

that  =  is a global maximum. Hence, there are no profitable deviations from  () below

 (1). For deviations above  (1), the same argument as in the proof of Proposition

5.1 applies.

In order to derive the necessary condition for an equilibrium to exist we note that the global

maximum  =  of  ( ) w.r.t.  must necessarily be a local maximum. The second-order

condition for the local maximum is  ( ) ≤ 0:

 ( ) = −
µ




 (|)− 

+ 
 (|)

¶
≤ 0

and the necessary condition of Proposition 5.3 follows. ¥

Proof of Proposition 5.4. Expected payment () of bidder  of type  in the SP-auction

is:

 () =  ( |) ((− ) +  | =   ≤ )

= (− )

Z
0

  ( |) +  ( |)

= ((− )+ ) ( |)− (− )

Z
0

 ( |) 
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His expected payment in the FEF-auction is:

 () =  () + ( |) ( −  +  | =    )

= 

Z
0

 (| )  +
Z
0

( − )  ( |) +  ( |)

= ((− )+ ) ( |) + 

Z
0

 (| )  − 

Z
0

 ( |) 

The difference  ()− () is

 ()− () = 

Z
0

( (| )− ( |))   0

for all   0 because, due to affiliation,  (| )   ( |) for all   . Therefore, the ex-ante

payment of any bidder, hence the auction revenue as well, is strictly higher in the FEF-auction

than in the SP-auction. ¥
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Summary

Auctions have been widely used over thousands of years. The Babylonians auctioned wives, the

ancient Greeks sold mine concessions in auctions, and the Romans put slaves, war booty, and

debtors property up for auction, among many other things. Nowadays, the use of auctions is

also widespread. There are auctions for art, fish, flowers, and wine, but also for more abstract

objects like treasury bills, radio frequency spectrum, and electricity distribution contracts.

In some of these auctions, the amount of money raised is almost beyond imagination. In

the 1990s, the US government collected tens of billions of dollars in auctions for licenses

for second generation mobile telecommunication, and in 2000, both the British and German

governments raised tens of billions of euros in auctions for license for third generation mobile

telecommunication. Auction theorists were closely involved in several of these auctions, both

consulting governments on the designs of these auctions and advising bidders on their bidding

strategies. This has generated a burst of auction theory.

Auction theory is a collection of game-theoretic models related to the interaction of bidders

in auctions, and was pioneered by William Vickrey in 1961. Vickrey, an economist from the

Columbia University in New York, studied private value auctions, in which each bidder’s value

for the object for sale is independent of the values of the other bidders. After Vickrey’s

seminal work, auction theory was mainly developed in the 1980s. Although several issues

were touched upon, such as the effects of risk aversion, correlation of information, budget

constraints, asymmetries, and so forth, these were not felt as being the main issues in auction

design in practice. In the 1990s, new models were developed that focused upon practical

issues. Today, many economists regard auction theory as the best application of game theory

to economics.

Auction theory is an important theory to study for several reasons. First, as many objects

are being sold in auctions, it is important to understand how auctions work, and which auctions

perform best, for instance in terms of generating revenues or in terms of efficiency. Second,

auction theory is a fundamental tool in economic theory. It provides a price formation model,

whereas the widely used Arrow-Debreu model from general equilibrium theory is not explicit

in how prices form. Also, the insights generated by auction theory can be useful when studying

several other phenomena which have structures that resemble auctions, like lobbying contests,

queues, war of attritions, and monopolist’s market behavior. For instance, the theory of

151
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monopoly pricing is mathematically the same as the theory of revenue maximizing auctions.

Reflecting its importance, auction theory has become a substantial field in economic theory.

This Ph.D. thesis is a collection of five published papers in auction theory. Each chapter

can be read independently from the other chapters. Chapter 1 provides a swift tour of auc-

tion theory and its applications. Chapter 2 studies auctions with financial externalities, i.e.,

auctions in which bidders prefer their opponents to pay the highest amount of money to the

seller. These kind of externalities might have played a role in high stake spectrum auctions like

the UMTS-auctions in Europe. Chapter 3 analyzes fund-raising mechanisms. The American

Association of Fundraising Counsel has estimated that the population in the USA donates

yearly circa 250 billion dollar to charity. Although charity is big business, not much is known

about what the most effective way is to raise money. Chapter 4 studies simultaneous pooled

auctions with multiple bids and preference lists. In these auctions single-object demand bid-

ders submit bids for every object for sale, and a preference ordering over which object they

would like to get if they have the highest bid on more than one object. This type of auction

has been used in the Netherlands and in Ireland to auction available spectrum. The results in

this chapter should convince governments not to use this type of format anymore in future al-

locations. Finally, Chapter 5 gives an answer to the question how inefficient auction outcomes

due to strong negative (informational) externalities (created by post-auction interactions) can

be avoided. These negative externalities arise when a bidders’ type (such as a measure of his

cost efficiency) positively affects his own value but negatively inflicts upon the value of the

competitor. For each chapter we will give a short summary.

Chapter 1 This introductory chapter gives an easily accessible overview of the most important

insights of auction theory. Among the questions it considers are: How much do bidders bid in

commonly studied single-object auctions? How efficient are these auctions? How much revenue

do they generate? Which single-object auction maximizes the seller’s expected revenue? What

is the best way to auction incentive contracts? And, how efficient and complex are multi-object

auctions?

In this chapter, we show that in the symmetric independent private values (SIPV) model

all efficient auctions yield the same revenue to the seller as long as the bidder with the lowest

possible value obtains zero expected utility. All four standard auctions (first-price sealed-bid

auction, Dutch auction, Vickrey auction, and English auction) are therefore revenue equivalent.

Relaxing the (strict) assumptions of the SIPV model destroys the revenue equivalence result

though. We also show that the seller faces a trade-off between efficiency and revenue. When

selling a single object, the seller maximizes his revenue by imposing a reserve price. This

causes inefficiency as the object remains unsold when none of the bidders turns out to be

willing to pay the reserve price, while they may assign a positive value to it. Equivalently,

in auctions of incentive contracts, the revenue maximizing buyer only assigns the incentive

contract if a sufficiently efficient firm enters the auction.
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In multi-object auctions, a new trade-off enters the picture: the trade-off between efficiency

and complexity. If each bidder in the auction only demands one object, and if the seller offers

homogeneous objects, the main results from the single-object case carry over: straightforward

generalizations of the standard auctions are efficient (and revenue equivalent). However, as

soon as objects are heterogeneous, or when bidders demand more than one object, an efficient

outcome is no longer guaranteed. Luckily, rather simple efficient auctions can be constructed

with multi-object demand if objects are homogeneous and with heterogeneous objects if there

is single-object demand. In the general case, with multi-object demand and heterogeneous

objects, the Vickrey-Clarke-Groves mechanism is efficient. However, this auction has several

practical drawbacks, for instance that it is complex as bids are needed on a large range of

packages. The disadvantages are only partially mitigated in innovative new designs that have

been recently proposed in the literature, such as Ausubel, Cramton, and Milgrom’s clock-proxy

auction and Goeree and Holt’s hierarchical package bidding auction.

Published : Going, Going, Gone! A Swift Tour of Auction Theory and Its Applications, De

Economist, 154(2), 2006, pp. 197-249 (with Sander Onderstal).

Chapter 2 This chapter studies sealed-bid auctions in environments with financial exter-

nalities, i.e. environments in which losers’ utilities depend on how much the winner pays.

Standard auction models usually assume that losers of the auction are indifferent about how

much the winner has paid. In reality, this does not need to be the case. In the series of UMTS

auctions in Europe bidders might have seeked to raise the prices paid by their competitors.

One purpose might have been to reduce competitors ability to finance the investment neces-

sary to develop a third generation mobile phone network. Another purpose might have been

to reduce competitors ability to bid in subsequent auctions.

In this chapter, we show that in the first-price auction, larger financial externalities result

in lower bids and therefore lead to a lower expected price. An intuition for this result is that

larger financial externalities make losing more attractive for the bidders. In the second-price

auction, the effect of financial externalities on both bids and expected price is ambiguous. A

possible explanation for this result is that in a second-price auction a bidder is not only inclined

to bid less the higher the financial externality (as he gets positive utility from losing), he also

has an incentive to bid higher, because, given that he loses, he is able to influence directly

the level of payments made by the winner. Although the expected price in the second-price

auction may increase if financial externalities increase, we show that the seller is not able

to gain more revenue by guaranteeing the losers a fraction of the auction revenue. We also

give a revenue comparison between the first-price and second-price auction. We find that the

second-price auction results in a higher expected revenue than the first-price auction unless

a bidder’s interest in his own payments is equal to the sum of the other bidders’ interest in

what he pays. In that case, both auctions are revenue equivalent.
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We also perform a study of the effect of a reserve price on equilibrium bidding. With a

reserve price, we find that both auctions may have pooling at the reserve price, i.e. for a

range of bidders it is optimal to submit a bid equal to the reserve price. To get an intuition

why pooling at the reserve price occurs in equilibrium, consider a bidder with a valuation

larger than the reserve price. He prefers to win if none of the other bidders submit a bid.

However, if someone does bid, he may wish to lose because the financial externalities may be

larger than the surplus he gets if he wins. If his valuation is not much higher than the reserve

price, then the tiny surplus he gets by bidding in the absence of a competitor’s bid does not

balance the risk of winning the auction in the presence of a competitor’s bid (and missing

the relatively large financial externalities); he therefore does not bid at all. If his valuation is

higher than a critical value, he submits a bid equal to the reserve price so that in the absence of

a competitor’s bid, he will win the object, and in the presence of a competitor’s bid he will win

with as small probability as possible. Small increases in the valuation do not change the fact

that the bidder prefers losing to winning in the presence of a competitor’s bid, which implies

that there is pooling at that price. Only if his valuation is much higher than the reserve price,

so that he would prefer winning to losing against another bidder who submits a bid, would

he raise his bid above the reserve price. Pooling at the reserve price may thus arise naturally,

and is therefore not something to be suspicious of.

In contrast to an environment without financial externalities, there exists no weakly sep-

arating Bayesian Nash equilibrium for the first-price auction. The second-price auction has a

weakly separating Bayesian Nash equilibrium if, and only if, the reserve price is sufficiently

low.

Published : Auctions with Financial Externalities, Economic Theory, 32(3), 2007, pp. 551-574

(with Sander Onderstal).

Chapter 3What do Eric Clapton’s guitar, Margaret Thatcher’s handbag, and Britney Spears’

pregnancy testing kit have in common? They were all auctioned for the benefit of charity.

Besides auctions, charities also organize lotteries and voluntary contributions to collect money.

The co-existence of these mechanisms raises the obvious question: “Which mechanism is

superior at raising money?” We answer this question in this chapter. We show that “all-pay”

auctions are better fundraising mechanisms than “standard” auctions, lotteries, and voluntary

contributions.

In this paper, we assume that bidders obtain extra utility ($) for each dollar that is

transferred to a charitable organization. We find that in standard auctions (in which only

the winner pays), revenues are relatively low. The reason is that all bidders forgo the extra

utility they obtain from a high bid by one bidder if they top this bid. Bids are suppressed as a

result, and so are revenues. This problem does not occur in lotteries and all-pay auctions where

bidders pay irrespective of whether they win or lose. Moreover, bidders are willing to bid more
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in all-pay auctions than in lotteries because in all-pay auctions, the highest bidder always wins

(in contrast to lotteries). We introduce a general class of all-pay auctions, rank their revenues,

and illustrate how they dominate lotteries, standard auctions, and voluntary contributions.

The optimal fund-raising mechanism is the lowest-price all-pay auction augmented with an

entry fee and reserve price. If the charity cannot commit to keep the good (so that it cannot

use an entry fee or a reserve price), the lowest-price all-pay auction raises the maximum

possible revenue. The intuition for the fact that the lowest-price all-pay auction generates the

highest revenue is that this auction is the only auction in which the lowest bidder not only

influences his own payment but also the payments of the other bidders. It is therefore not

attractive to bid low.

We demonstrate that an increase in the number of bidders may decrease revenues in all-

pay formats. Fund-raisers may therefore benefit from limiting the number of contestants. The

intuition behind this result can be made clear by considering the second-price all-pay auction.

With two bidders ( = 2), the loser knows that his bid determines the price paid by the

winner, which provides the loser with an incentive to drive up the price. This is not true

with three or more bidders, however, in which case the − 2 lowest bids are paid only by the
losers. Hence there are no positive externalities associated with such bids, which become like

voluntary contributions to the charity. This suppresses bids of low-value bidders, who free-ride

on the revenues generated by the bidders with higher values.

The total amount raised is increasing with . If  is large, then bidders may bid infinite

amounts and, to deal with this, a budget constraint,  , is assumed. If bidders value $1 for

the charity the same as $1 kept, revenues of a lottery or any of the all-pay auctions are equal

to the sum of the bidders’ budgets,  . This maximum possible revenue contrasts with the

expected revenue of a standard auction (since only a single bidder pays).

Our findings are not just of theoretical interest. The frequent use of lotteries as fund-

raisers indicates that people are willing to accept an obligation to pay even though they may

lose. All-pay auctions may be characterized as incorporating “voluntary contributions” into a

standard auction. They are easy to implement and may revolutionize the way in which money

is raised. If a charity wants to stick to standard auctions (for whatever reason), then it is

better to use higher-price auctions, because, as we show in our paper, third-price auctions

revenue dominate second-price auctions, which in turn revenue dominate first-price auctions.

Only in case bidders are indifferent between a dollar donated and a dollar kept, the amount

of money generated is identical for all standard auctions. The revenue is then equal to the

expected value of the highest order statistic. Unlike all-pay auctions which may yield lower

revenues when there are more bidders, standard auctions yield higher revenues when there

are more bidders. It is therefore not optimal to limit competition and to restrict access to “a

happy few.”

Published : How (Not) to Raise Money, Journal of Political Economy, 113(4), 2005, pp. 897-918
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(with Jacob Goeree, Sander Onderstal, and John Turner).

Chapter 4 This chapter analyzes the multi-object sealed-bid auction used to allocate Dutch

commercial radio station licenses and Irish digital mobile data service licenses. In this partic-

ular auction, bidders submit bids for every object, and state a preference ordering over which

object they would like to get if they have the highest bid on more than one object. This

ordering decides which of those objects will be given to the bidder, who can only win a single

object. In the two-object case, the allocation rule is as follows. The auctioneer opens all bids.

If a bidder has only one highest bid, he gets the corresponding object, independent of his

preference. If he has two highest bids, he gets the object that is highest on his preference list.

The other object goes to the bidder who has submitted the second highest bid for that object.

All winners pay their winning bid as a price.

In our model, bidders’ values for object 1 are determined by independent draws from a

fixed distribution. Bidders’ values for object 2 are simply equal to 0   ≤ 1 times the value of
the first object. Each bidder knows his own value, but not the values of the other bidders. The

ratio of valuations for the two objects is assumed to be identical for all bidders, because in the

Dutch auction the value of a license was likely to be proportionally related to its demographic

coverage. The preference ordering is modeled as a probability of taking object 1.

In the paper, we focus on efficient Bayes-Nash equilibria. In our setup, an efficient auction

would allocate object 1 to the bidder with the highest draw of the random variable and

object 2 to the bidder with the second highest draw of the random variable (when objects

are heterogeneous). There are two main results. The first result establishes that an efficient

equilibrium fails to exist when the number of bidders is sufficiently large. The second result

establishes that inefficiencies also arise for a small number of bidders, as long as the objects

are sufficiently close in value.

The intuition for the first result is as follows. In an efficient equilibrium, bidders use

increasing bidding strategies, and express a preference for object 1. A bidder with a high

valuation then has a profitable deviation: he wishes to lower his bid on object 2, and express a

preference for the lower valued object. Since he is almost certain to win the auction for object

1, his bid on object 2 in the efficient equilibrium is wasted. The bidder should thus lower his bid

on object 2 until the profit margin exceeds that on object 1. While he is unlikely to win object

2, he increases his profits in the states he does win and does not affect his profits in the states

he loses. As the realized profit from such a deviation is strictly positive and independent of

the number of bidders, whereas the profit in the efficient equilibrium asymptotically decreases

to zero, a larger number of bidders makes the deviation more profitable.

The intuition for the second result is as follows. Fix the number of bidders. Consider the

bidder with the highest possible valuation. For a small number of bidders, this bidder’s profit

in the efficient equilibrium is relatively large. As noted above, the profit from following the

deviation strategy differs from the equilibrium profit only in the event this bidder is still the
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highest bidder on object 2 when deviating. The deviation profit is in this event at most 

(the value of object 2 to this bidder). If  is small, i.e., if the objects are very heterogeneous,

the equilibrium profit is larger than the deviation profit. For sufficiently large , this bidder

deviates though.

As an efficient equilibrium does not exist, an equilibrium must be non-monotone, asymmet-

ric, or in mixed strategies. In either of these three cases, there is a strictly positive probability

that the less valued object is sold for more than the more valued object. In this sense, the

paper may give an explanation for the observation in the Dutch auction that less valuable

spectrum is sold for a higher price than more valuable spectrum.

Also when objects are homogeneous, this auction leads to inefficiencies (with positive

probability). The argument is as follows. As in the heterogeneous object case, the bidder with

the highest possible valuation has an incentive to submit a high bid on one object and a low

bid on the other object, and to express his preference for the object on which he submits the

lowest bid. Homogeneity of the objects leads bidders to put their (deterministic) high and low

bids randomly on both objects. If the high bid of the bidder with the third highest valuation

is matched with the low bid of the bidder with the second highest valuation, then the bidder

with the second highest valuation may leave the auction empty handed.

In this chapter, we therefore argue that this type of auction format, i.e., a multi-object

sealed-bid auction with right-to-choose ingredients, should not be used (anymore). Other

mechanisms exist that do have efficient equilibria (under fairly general conditions).

Published : Simultaneous Pooled Auctions with Multiple Bids and Preference Lists, Journal

of Institutional and Theoretical Economics, 166(2), 2010, pp. 286-298 (with Maarten Janssen

and Vladimir Karamychev).

Chapter 5 This chapter introduces a new class of selling mechanisms: auctions with flexible

entry fees. The mechanism is a two stage multi-agent signaling game in which bidders observe

their private information, i.e. their type, and then participate in a two stage game. In the first

stage (the signaling stage), bidders simultaneously make publicly observable voluntary pay-

ments (so-called flexible entry fees) to an auctioneer. In the second stage (the auction stage),

bidders participate in a second-price sealed-bid auction where bidders’ valuations negatively

depend on the types of the other bidders. We show that, given certain assumptions, there

exists an equilibrium of this mechanism in which, in the first stage, the payment is monotoni-

cally increasing in the bidder’s type, while in the second stage, each bidder bids his valuation,

conditional on everything that is revealed in the first stage. Because of monotonicity, this

equilibrium is efficient, that is, the object ends up with the bidder that values it most. The

extension of this result to  identical objects with the (+ 1)-bid price rule is immediate.

The reason why bidders want to pay a positive entry fee is that, although the entry fee

is sunk at the moment of the auction, entry fees signal bidders’ types thereby affecting each
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other’s bids in a desirable way (due to the negative interdependency): bids in the second stage

get lower when entry fees increase. By raising the entry fee, a bidder reduces the bid of his

competitor and, therefore, lowers the price to be paid in case he wins the object. The larger the

bidder’s type, the larger his incentive to signal, because a bidder of a higher type wins with a

higher probability and, therefore, is willing to spend a larger part of his maximum willingness

to pay on signaling his type through the entry fee. Together with the fact that the maximum

willingness to pay of this higher type is higher (for the same fixed types of competitors), this

implies that the higher type sets a higher entry fee.

For a second-price sealed-bid auction with independently distributed types, we show that

if the negative interdependencies are relatively weak, the auction with flexible entry fees is

revenue equivalent to and yields the same (efficient) allocation as the standard second-price

sealed-bid auction. If the negative interdependencies are relatively strong, the auction with

flexible entry fees remains efficient whereas the standard second-price sealed-bid auction is

known to be inefficient. When types are ex-ante positively correlated and the correlation is

not too strong, a similar result holds true, but revenue equivalence fails. It turns out that

when both auctions have an efficient equilibrium, the auction with flexible entry fees performs

better in terms of revenue.

When bidders’ types are strongly positively correlated bidders do not have an incentive to

signal their types by paying a (high) entry fee as the other bidders can anyway infer someone’s

type once they have observed their own type. Therefore, an efficient equilibrium of the auction

with flexible entry fees only exists if the correlation is not too strong. The good news, however,

is that the separating equilibrium of the auction with flexible entry fees generates strictly higher

revenue than the standard second-price sealed-bid auction.

The main message of this chapter is that inefficient auction outcomes due to strong negative

externalities (which are often created by post-auction interactions such as resale or future

market competition) can be avoided by asking bidders prior to the auction to submit any

publicly observable payment they would like to make. In case of positively correlated types,

the possibility of pre-auction payments also brings about a higher revenue to the auctioneer.

Giving bidders a possibility to signal their type prior to the auction (through the flexible entry)

might thus have a positive effect, in contrast to signaling types through bidding behavior during

an auction.

Another interpretation of the auction with flexible entry fees (where the monetary fees

are collected by the auctioneer) is that firms burn money or hire expensive auction experts

to signal their strength. As long as the amount of money burnt (the cost of hiring auction

experts) is either visible or made public, then this will have the same effect as flexible entry

fees. Again, contrary to the common idea that exchanging information is bad (as it may lead

to collusion), making this kind of information public will improve the efficiency of the auction.

In this interpretation, however, the revenue collected by the auctioneer is lower than in the
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standard second-price sealed-bid auction, because a part of the revenue is either burnt or spent

on experts.

Published (shortened version): Auctions with Flexible Entry Fees: A Note, Games and Eco-

nomic Behavior, 72(2), 2011, pp. 594-601 (with Maarten Janssen and Vladimir Karamychev).
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auctions, charitable fundraising, industrial organization, and competition 
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of Political Economy, Games and Economic Behavior, Economic Theory, 
Journal of Institutional and Theoretical Economics, and Telecommunications 
Policy. Currently, he works at SEOR, an applied economic research institute 
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Rotterdam.

Auction theory is a branch of game theory that considers human behavior 
in auction markets and the ensuing market outcomes. It is also successfully 
used as a tool to design real-life auctions. This thesis contains five essays 
addressing a variety of topics within the realm of auction theory. The first 
essay gives an easily accessible overview of the most important insights of 
auction theory. The second essay, motivated by the UMTS-auctions that took 
place in Europe, studies auctions in which, in contrast to standard auction 
theory, losing bidders benefit from a high price paid by the winner(s). Under 
this assumption, the first-price sealed-bid auction and the second-price sealed-
bid auction are no longer revenue equivalent. The third essay analyzes how 
well different kinds of auctions are able to raise money for charity. It turns 
out that standard winner-pay auctions are inept fund-raising mechanisms 
because of the positive externality bidders forgo if they top another’s high 
bid. As this problem does not occur in all-pay auctions, where bidders pay 
irrespective of whether they win or lose, all-pay auctions are more effective in 
raising money. The fourth essay studies a particular auction type, a so-called 
simultaneous pooled auction with multiple bids and preference lists, that has 
been used for example in the Netherlands and Ireland to auction available 
spectrum. The results in this essay show that this type of auction does not 
satisfy elementary desirable properties such as the existence of an efficient 
equilibrium. The fifth essay argues that inefficient auction outcomes due 
to strong negative (informational) externalities (created by post-auction 
interactions) can be avoided by asking bidders prior to the auction to submit 
any publicly observable payment they would like to make.
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