
  

 

 

Tilburg University

Optimal Auctions with Financial Externalities
Maasland, E.; Onderstal, A.M.

Publication date:
2002

Link to publication

Citation for published version (APA):
Maasland, E., & Onderstal, A. M. (2002). Optimal Auctions with Financial Externalities. (CentER Discussion
Paper; Vol. 2002-21). Tilburg: Microeconomics.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright, please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 31. Oct. 2017

https://pure.uvt.nl/portal/en/publications/optimal-auctions-with-financial-externalities(f69f3ee8-a267-4e09-82b1-94e340ceecaf).html


No. 2002-21

OPTIMAL AUCTIONS WITH FINANCIAL
EXTERNALITIES

By Emiel Maasland and Sander Onderstal

March 2002

ISSN 0924-7815



Optimal Auctionswith Financial Externalit ies¤

Emiel Maaslandyand Sander Onderstalz
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A bst r act
We const ruct opt imal auct ions when bidders face …nancial external-

it ies. In a Coasean World, in which the seller cannot prevent a perfect
resale market , nor withhold the object , the lowest -price all-pay auct ion
is opt imal. In a Myersonean World, in which the seller can both prevent
resale after the auct ion, and fully commit to not selling the object , an op-
t imal two-stagemechanism is derived. In the…rst stage, bidders are asked
to pay an ent ry fee. In the second stage, bidders play the lowest -price all-
pay auct ion with a reserve price. In both worlds, the expected revenue is
increasing in the …nancial externality, and each bidder’s expected ut ility
is independent of the …nancial externality.

Keywords: Opt imal auct ions, …nancial externalit ies, lowest -price all-
pay auct ion, Coasean World, Myersonean World.

JEL classi…cation: D44

1 Int roduct ion
Wewill consider the problem of a seller who wishes to sell one indivisible object
in an opt imal auct ion in an environment with…nancial externalities. An opt imal
auct ion is a feasible auct ion mechanism that maximizes the seller’s expected
revenue. To get an idea about the environment , imagine that two …rms bid
for a license to increase their capacity in the market in which they compete.
When …nancial markets are assumed not to work perfect ly, the winner is able
to invest less, the higher the price it pays in the auct ion. This is an advantage
to the losing …rm, so that the losing …rm’s ut ility depends on the payments
made in the auct ion by the winner. Throughout the paper, we will refer to the
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e¤ect of other bidders’ payments on a bidder’s ut ility as a…nancial externality.1
Especially in high stake auct ions, like the UMTS auct ions that took place in
Europe in 2000 and 2001, …nancial externalit iesmay in‡uence bidding behavior
(Maasland and Onderstal, 2002; Börgers and Dustmann, 2001).

Myerson (1981) init iates research on opt imal auct ions in an environment
without …nancial externalit ies.2,3 He derives three important results. The …rst
is the celebrated Revenue-EquivalenceTheorem, which states that the expected
ut ility of both the bidders and the seller is completely determined by the alloca-
t ion rule of the feasible auct ion mechanism and the ut ilit ies of the lowest types.
We refer to this result as theWeak Revenue-Equivalence Theorem. Second, with
symmetric bidders, all standard auct ions yield the same expected revenue. We
refer to this result as the First Strong Revenue-Equivalence Theorem. Third,
with symmetric bidders, all standard auct ions are opt imal when the seller im-
poses the same, opt imal reserve price. We refer to this result as the Second
Strong Revenue-Equivalence Theorem.4

With asymmetric bidders, under a regularity condit ion, Myerson shows that
the opt imal auct ion assigns the object to the bidder with the highest marginal
revenue, provided that the highest marginal revenue is nonnegat ive. In case all
bidders havea negat ivemarginal revenue, the seller keeps theobject . Moreover,
the ut ilit ies of the lowest types in an opt imal auct ion are equal to zero. For this
result , Myerson assumes that (1) the seller can prevent resale of the object
after the auct ion, and (2) he can fully commit to not selling the object . The
…rst assumpt ion is made, as the seller may need to misassign the object , i.e.,
assign it to a bidder who does not have the highest value for it . The second
assumpt ion is made, as the seller may opt imally withhold the object when only
low valued bidders part icipate. When these assumpt ions hold, we will speak of
a Myersonean World.

Ausubel and Cramton (1999) argue that somet imes the assumpt ion of a
Myersonean World is not realist ic, and study opt imal auct ions in a set t ing in
which (1) the seller cannot prevent the object changing hands in a perfect re-
sale market ,5 and (2) he cannot commit to keeping the object . We will refer
to this set t ing as a Double Coasean World, as the …rst assumpt ion is related
to the Coase Theorem (Coase, 1960), and the second to the Coase Conjecture
(Coase, 1972). Haile (1999) proves that , with symmetric bidders, equilibrium
bidding in standard auct ions does not change when bidders are o¤ered a re-

1In our companion paper (Maasland and Onderstal, 2002), we study equilibrium behavior
in …rst -price and second-price sealed-bid auct ions in an environment with …nancial external-
it ies. Theories of equilibrium bidding in related environments can be found in Engelbrecht -
W iggans (1994), and in Bulow et al. (1999).

2 Independent ly and simultaneously, Riley and Samuelson (1981) derive similar result s.
3Myerson (1981) was followed by, among others, Engelbrecht -W iggans (1988), Cremer and

McLean (1985, 1988), Maskin and Riley (1989), McAfee and Reny (1992), and Bulow and
K lemperer (1996).

4Myerson does not ment ion this result explicit ly, but it follows from his study. Riley and
Samuelson (1981) explicit ly derive the result in an independent private values model.

5 In a perfect resale market , t he object , when being sold in the auct ion, always ends up in
the hands of the bidder with the highest value.
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sale market opportunity after the auct ion. With this result , the Third Strong
Revenue-EquivalenceTheorem can bederived: In aDoubleCoasean World, with
symmetric bidders, all standard auct ions (without reserve price) are opt imal.

In this paper, wemodify Myerson’smodel by allowing for …nancial externali-
t ies, given by an exogenous parameter ' . Weassumea model with independent
private signals. The model has independent private values models and pure
common valuemodels as special cases. With symmetric bidders, thismodel is a
special caseof the a¢ liated private signalsmodel of Milgrom and Weber (1982).
We will show that with …nancial externalit ies, the Weak Revenue-Equivalence
Theorem remains valid. Also the condit ions for opt imality remain the same as
in Myerson.

Our companion paper (Maasland and Onderstal, 2002) shows that thest rong
revenue-equivalence results are not valid when bidders are confronted with …-
nancial externalit ies. The First Strong Revenue-Equivalence Theorem does not
hold as in the case of two bidders, the …rst-price sealed-bid auct ion yields less
expected revenue than the second-price sealed-bid auct ion. The driving force
behind this result is that the expected ut ility of the lowest type in the…rst -price
auct ion is higher than the expected ut ility of the lowest type in the second-price
auct ion. The Second Strong Revenue-Equivalence Theorem does not hold for
two reasons. First , a standard auct ion with reserve price gives the lowest type
st rict ly posit ive expected ut ility because of the payments by others. Second,
the …rst -price sealed-bid auct ion and the second-price sealed-bid auct ion may
not have equilibria in which act ive bidders submit bids according to a func-
t ion that is st rict ly increasing in their type, so that the winner of the object
is not always the bidder with the highest marginal revenue. The Third Strong
Revenue-Equivalence Theorem fails to hold as in both the …rst-price and the
second-price sealed-bid auct ion, the lowest type gets a st rict ly posit ive expected
ut ility.

In the remainder of thepaper, wewill show theopt imality of the lowest-price
all-pay auction when we take a symmetry assumpt ion. (Goeree and Turner,
2002, derive a similar result in a related environment.) In Sect ion 4, we solve
the seller’s problem in a Double Coasean World. We start with this set t ing, as
it is more st raight forward to …nd an opt imal auct ion here than in a Myersonean
World. We derive that the lowest -price all-pay auct ion is opt imal, as the lowest
typegets zero expected ut ility. In Sect ion 5, we…nd a two-stage feasible auct ion
mechanism which solves theseller’s problem in aMyersonean World. In the…rst
stage, all bidders pay an entry fee, in order to make sure that the lowest type
gets zero expected ut ility. If at least oneof thebidders indicate not to bewilling
to accept the entry fee, the seller keeps the object , and no payments are made.
Otherwise, in the second stage, the lowest -price all-pay auct ion with a reserve
price is played. Theopt imality of the lowest -price all-pay auct ion with a reserve
price follows from the observat ion that , if it assigns the object , it always assigns
the object to the bidder with the highest marginal revenue. In both worlds, in
an opt imal auct ion, the highest possible expected revenue is st rict ly increasing
in ' , and a bidder’s expected ut ility is independent of ' .
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2 The model
Consider a seller, who wishes to sell one indivisible object to one out of n risk
neutral bidders, numbered 1;2; :::; n. Theseller aimsat …nding a feasibleauct ion
mechanism which gives him the highest possible expected revenue. We assume
that the seller does not at tach any value to the object . Each bidder i receives a
one-dimensional private signal t i . (We also say that “ bidder i is of type t i ” .) t i
is drawn, independent ly from all the other private signals, from a dist ribut ion
funct ion Fi . Fi has support on the interval [t i ; ¹t i ], and cont inuous density f i
with f i (t i ) > 0, for every t i 2 [t i ; ¹t i ]. De…ne the sets

T ´ [t1; ¹t1] £ ::: £ [tn ; ¹tn ],

and

T¡ i ´ £ j 6= i [t j ; ¹t j ],

with typical elements t ´ (t1; :::; tn ) and t ¡ i ´ (t1; :::; t i ¡ 1; t i + 1; :::; tn ) respec-
t ively. Let

g(t ) ´
Y

j
f j (t j )

be the joint density of t , and let

g¡ i (t ¡ i ) ´
Y

j 6= i
f j (t j )

be the joint density of t ¡ i .
Thevalueof theobject for a bidder is de…ned asa funct ion of her own signal,

and the signals of all the other bidders. Denote by vi (t ) the value for bidder i
given that the vector of types is t . We make the following assumpt ions on the
funct ions vi .6

Value Di¤erentiability: vi is di¤erent iable in all its arguments, for all i ; t .
Value Monotonicity: vi (t ) ¸ 0; @v i ( t )@t i > 0; and @v i ( t )

@t j ¸ 0, for all i ; j ; t .

Value Di¤erentiabili ty ensures the existence of each bidder’s marginal rev-
enue (which will bede…ned later). ValueMonotonicity indicates that all bidders
are serious, and that bidders’ values are strict ly increasing in their own signal,
and weakly increasing in the signals of the others.

6Myerson (1981) uses the following value funct ions:

vi (t ) ´ t i +
X

j 6= i
ej (t j );

where ej is t he revision e¤ect funct ion related to bidder j , with ej : [t j ; ¹t j ] ! < . T hese value
funct ions are not necessarily included in our model.
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In Sect ions 4 and 5, we make the following ext ra assumpt ion.

Symmetry: Fi = Fj for all i ; j , and vi (:::; t i ; :::; t j ; :::) = vj (:::; t j ; :::; t i ; :::) for
all t i ; t j ; i ; j :

Symmetry may be crucial for the existence of e¢ cient equilibria in standard
auct ions.7 Value Di¤erentiabili ty, Value Monotonicity, and Symmetry together
ensure that the bidder with the highest signal is also the bidder with the high-
est value, so that these assumpt ions imply that the seller assigns the object
e¢ cient ly if and only if the bidder with the highest signal gets it .

When Symmetry holds, let F ´ F1 = ::: = Fn , f ´ f 1 = ::: = f n , t ´ t1 =
::: = tn , and t ´ t1 = ::: = tn . Also, wewill let F [1] and f [1] (F [n ¡ 1] and f [n ¡ 1])
denote the cumulat ive dist ribut ion funct ion and density funct ion of maxj 6= 1 t j
(minj 6= 1 t j ). Finally, let us de…ne v(y; z) as the expected value that bidder i
assigns to the object , given that her signal is y, and that the highest signal of
all the other bidders is equal to z.

v(y; z) ´ Et ¡ i [vi (t )j t i = y; max
j 6= i

t j = z]:

With Symmetry, this model is a special case of the a¢ liated signals model of
Milgrom and Weber (1982).

Throughout the paper, we use the following de…nit ion of bidder i ’s marginal
revenue.

M Ri (t ) ´ vi (t ) ¡
1 ¡ Fi (t i )
f i (t i )

@vi (t )
@t i

.

This expression can be derived, like in Bulow and Roberts (1989) (for inde-
pendent private values) and Bulow and Klemperer (1996) (for independent pri-
vate signals), from the monopolist ’s problem in third-degree price discrimina-
t ion. This can be done by construct ing bidder i ’s demand curve from her value
funct ion and signal dist ribut ion funct ion, and di¤erent iate the related monop-
olist ’s pro…t funct ion with respect to quant ity. When Symmetry is sat is…ed,
let M R(t ) ´ M R1(t ) = ::: = M Rn (t ). We make the following assumpt ion on
M Ri .

MR Monotonicity: M Ri (t ) is st rict ly increasing in t i for all i ; t .

MR Monotonicity is equivalent to the assumpt ion made in standard micro-
economic theory that the monopolist ’s demand curve is downward-sloping.

The bidders are risk-neutral expected ut ility maximizers. In order to incor-
porate the…nancial externalit ies, we insert an exogenousnonnegat iveparameter

7K lemperer (1998) shows that a slight asymmet ry in value funct ions may have dramat ic
e¤ects on bidding behavior in the English auct ion in a(n almost ) common value set t ing. A l-
t hough e¢ ciency is not an issuewith (almost ) common values, the result shows the importance
of symmet ry in value funct ions. Maskin and Riley (2000) study the e¤ect of asymmet ric dis-
t ribut ions on bidding behavior in the …rst -price and the second-price sealed-bid auct ion, and
show that the equilibrium of the …rst -price auct ion is ine¢ cient .
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' into the bidders’ ut ility funct ions. This parameter indicates each bidder’s in-
terest in the others’ payments. The ut ility of bidder i is

vi ¡ x i + '
X

j 6= i
x j

when i wins the object , and

¡ x i + '
X

j 6= i
x j

when i does not win the object , with x j the payment by bidder j to the seller.
We assume ' 2 [0; 1

n ¡ 1 ).8

3 Weak revenue equivalence
Using theRevelat ion Principle of Myerson (1981), wemay assume, without loss
of generality, that the seller only considers feasible auct ion mechanisms in the
class of feasible direct revelat ion mechanisms.9 Let (p; x) be a feasible direct
revelat ion mechanism, with

p : T ! [0;1]n ;

where
X

j
pj (t ) · 1,

and

x : T ! < n :

Weinterpret pi (t ) astheprobability that bidder i wins, and x i (t ) astheexpected
payments by i to the seller when t is announced.

Bidder i ’s ut ility of (p; x) given t is given by

vi (t )pi (t ) ¡ x i (t ) + '
X

j 6= i
x j (t );

so that bidder i ’s interim ut ility of (p; x) can be writ ten as
8In case ' 2 [0; 1

n ¡ 1 ), a bidder’s interest in his own payments is larger than his interest
in the payments by the other bidders. In footnote 13, we will discuss the consequences of
allowing ' t o be larger than 1

n ¡ 1 .
9A feasible direct revelat ion mechanism is an auct ion mechanism in which each bidder is

asked to announce his type, which sat is…es individual rat ionality condit ions, incent ive com-
pat ibility condit ions, and st raight forward rest rict ions on the allocat ion rule.

6



Ui (p; x; t i ) ´
Z

T¡ i

[vi (t )pi (t ) ¡ x i (t ) + '
X

j 6= i
x j (t )]g¡ i (t ¡ i )dt ¡ i , (1)

with dt ¡ i ´ dt1:::dt i ¡ 1dt i + 1:::dtn .
Similarly, the seller’s expected ut ility of (p; x) is

U0(p; x) ´
Z

T

nX

i = 1
x i (t )g(t )dt ;

with dt ´ dt1:::dtn .
The following two lemmas will be used to solve the seller’s problem.

Lemma 1 Let (p; x) be a feasible direct revelation mechanism. Then the in-
terim uti li ty of (p; x) for bidder i is given by

Ui (p; x; t i ) = Ui (p; x; t i ) +
t iZ

t i

wi (si )dsi , (2)

with

wi (t i ) ´ E t ¡ i f pi (t )
@vi (t )
@t i

g.

Proof. Incent ive compat ibility implies

Ui (p; x; si ) ¸ Ui (p; x; t i ) + E t ¡ i f pi (t )(vi (si ; t ¡ i ) ¡ vi (t ))g

for all si , t i and t ¡ i , or, equivalent ly

@Ui (p; x; t i )
@t i

= E t ¡ i f pi (t )
@vi (t )
@t i

g = wi (t i ), (3)

at all points where pi is di¤erent iable in t i (by Value Di¤erentiabili ty, vi is
di¤erent iable at any t i ). By integrat ion of (3), we get (2).

Lemma 2 Let (p; x) be a feasible direct revelation mechanism. The seller’s
expected revenue from (p; x) is given by

U0(p; x) =
Et f

nP
i = 1

M Ri (t )pi (t )g ¡
nP
i = 1

Ui (p; x; t i )

1 ¡ ' (n ¡ 1) . (4)
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Proof. De…ne

X i ´
Z

T

x i (t )g(t )dt , (5)

Vi ´
Z

T

vi (t )pi (t )g(t )dt , (6)

and

Yi ´
Z

T i

Ui (p; x; t i )f i (t i )dt i . (7)

By (1), we have, for all i ,

Yi = Vi ¡ X i + '
X

j 6= i
X j . (8)

Adding theequat ions in (8) over i and rearranging terms implies that theseller’s
expected revenue from a feasible direct revelat ion mechanism (p; x) is given by

U0(p; x) =
nX

i = 1
X i =

nP
i = 1

Vi ¡
nP
i = 1

Yi

1 ¡ ' (n ¡ 1) . (9)

Taking the expectat ion of (2) over t i and using integrat ion by parts, we
obtain

E t i f Ui (p; x; t i )g = Ui (p; x; t i ) + E t i f
1 ¡ Fi (t i )
f i (t i )

wi (t i )g,

with

wi (t i ) ´ E t ¡ i f pi (t )
@vi (t )
@t i

g,

so that (4) follows with (9) and (5)-(7).

From Lemmas 1 and 2, it immediately follows that the Weak Revenue-
Equivalence Theorem remains valid with …nancial externalit ies.

Corol lar y 3 Both the seller’s and the bidders’ expected uti li ty from any feasible
auction mechanism is completely determined by the probabili ty function p and
the uti li ties of the lowest typesUi (p; x; t i ) for all i related to its equivalent feasible
direct revelation mechanism (p; x).

Observe from Lemmas 1 and 2 respect ively that , provided that the expected
ut ility of the lowest type remains zero when ' is varied, a bidder’s interim
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ut ility does not depend on ' , whereas the seller’s expected revenue is increasing
in ' . An intuit ion for the …rst observat ion is the following. Suppose that
bidders, instead of receiving …nancial externalit ies, obtain a fract ion ' of what
the other bidders pay in the auct ion. Then Myerson (1981) shows that the
interim ut ility of a bidder does not depend on ' . From a bidder’s perspect ive,
these two situat ions are equivalent , and the observat ion follows immediately.
The intuit ion for thesecond observat ion follows from the…rst . Fix thepayments
of all bidders. Then a bidder’s expected ut ility increases with ' . Therefore, to
make sure that a bidder’s interim ut ility does not depend on ' , her expected
payment must increase as well.

From Lemma 2, interest ing insights can be drawn with respect to opt imal
auct ions. Observe that in the expression for the seller’s expected revenue, a
key role is played by the marginal revenues of the bidders. Suppose that the
seller …nds a feasible auct ion mechanism that assigns the object to the bid-
der with the highest marginal revenue, provided that the marginal revenue is
nonnegat ive, and that leaves the object in the hands of the seller if the highest
marginal revenue is negat ive. Supposealso that this feasible auct ion mechanism
gives the lowest types zero expected ut ility. Then, under MR Monotonicity,10
with the individual rat ionality const raints Ui (p; x; t i ) ¸ 0, this feasible auct ion
mechanism is opt imal. In Sect ion 5, we will discuss this observat ion in more
detail, and we will show how the seller can const ruct an opt imal auct ion in an
environment with …nancial externalit ies.

4 The Double Coasean Wor ld
For the remainder of the analysis, we assume that Symmetry holds. Consider
the lowest-price all-pay auction, which has the following rules. All bidders si-
multaneously and independent ly announce a bid to the seller. The bidder who
announces the highest bid gets the object , with t ies being broken among the
highest bidders with equal probability. Each bidder has to pay the lowest sub-
mit ted bid. Wewill show now that in a DoubleCoasean World, the lowest -price
all-pay auct ion is opt imal.

Recall that a Double Coasean World is a situat ion in which (1) the seller
cannot prevent a perfect resale market , and (2) the seller cannot withhold the
object . Theseassumpt ions impose two extra restrict ionson theseller’s problem,
namely

for all t and i , pi (t ) > 0 only if t i = max
j

t j (10)

and

for all t ,
X

i
pi (t ) = 1 (11)

10This assumpt ion is needed for incent ive compat ibility considerat ions. See Myerson (1981)
for a further discussion on the consequences of relaxing this assumpt ion.
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respect ively. In fact , these rest rict ions…x pi (t ) (apart from the zero massevents
t i = t j for some i and j ) in such a way that the object is always assigned to the
bidder with the highest signal.

Asrestrict ions(10) and (11) …x theallocat ion rulep, by Lemma2, a su¢ cient
condit ion for the opt imality of a feasible auct ion mechanism is that the lowest
types expect zero ut ility (from theauct ion plus resalemarket ). The lowest -price
all-pay auct ion is a natural candidate to ful…ll this requirement. To see this,
suppose that in equilibrium, the auct ion is e¢ cient , and that a bidder with
the lowest type considers to bid b. Then, as the equilibrium is e¢ cient , all the
other bidders have to pay b. The expected ut ility of the lowest type equals
¡ b+ (n ¡ 1)' b, which is strict ly negat ive for all b > 0 when ' 2 [0; 1

n ¡ 1 ).
Therefore, the lowest type prefers to bid zero, so that she obtains zero expected
ut ility, as when she is present , each bidder pays zero in the auct ion.

Proposit ion 4 characterizes the symmetric equilibrium for the lowest -price
all-pay auct ion. By a standard argument, the equilibrium bid funct ion must
be strict ly increasing and cont inuous. Let U(t; s) be the ut ility for a bidder
with signal t who behaves as if having signal s, whereas the other bidders play
according to the equilibrium bid funct ion. A necessary equilibrium condit ion is
that

@U(t; s)
@s = 0

at s = t. From this condit ion, a di¤erent ial equat ion can bederived, from which
the equilibrium bid funct ion is uniquely determined (at least if we rest rict our
at tent ion to di¤erent iable bid funct ions). Observe that indeed the lowest type
bids zero, that the equilibrium is e¢ cient , and that bids increase with ' .11

Proposit ion 4 Suppose that all bidders submit a bid according to the following
bid function.

B (t) = 1
(1 ¡ ' (n ¡ 1))

tZ

t

v(y; y)f [1](y)
1 ¡ F [n ¡ 1](y) dy:

Then B constitutes the unique symmetric di¤erentiable Bayesian Nash equilib-
r ium of the lowest-price all-pay auction. The outcomeof this auction is e¢ cient.

Proof. The following observat ions imply that a symmetric equilibrium bid
funct ion must be st rict ly increasing and cont inuous. First , a higher type of a
bidder cannot submit a lower bid than a lower type of the same bidder. (If
the low type gets the same expected surplus from strategies with two di¤erent
11In case of a uniform signal dist ribut ion on the interval [0; 1], independent private values,

and two bidders, t he unique symmet ric di¤erent iable Bayesian Nash equilibrium of the lowest -
price all-pay auct ion is established by

B (t ) = 1
1 ¡ '

[¡ t ¡ log(1 ¡ t )]:

10



probabilit ies of being the winner of the object , the high type st rict ly prefers
the st rategy with the highest probability of winning, so that the high type will
not submit a lower bid than the low type.) Second, B (t) cannot be constant
on an interval [t0; t00]. (By bidding slight ly higher, t00 can largely improve its
probability of winning, while only marginally in‡uencing the payments by her
and the other bidders.) Third, B (t) cannot be discont inuous at any t. (Suppose
that B (t) makesa jump from b to bat t¤. A type just above t¤ hasan incent ive to
deviate to b. Doing so, she is able to substant ially decrease theexpected auct ion
price, while just slight ly decreasing the probability of winning the object .)

We proceed assuming a strict ly increasing and di¤erent iable equilibrium bid
funct ion. The probability of having the lowest bid for a bidder with signal t is
equal to 1 ¡ F [n ¡ 1](t). If x is the auct ion price, then, in terms of ut ility, each
bidder loses (1 ¡ ' (n ¡ 1))x: De…ne

~B (s) ´ (1 ¡ ' (n ¡ 1))B (s),

and U(t; s) as the expected ut ility of a bidder with type t who misrepresents
herself as type s given that the other bidders report t ruthfully. Then,

U(t; s) =
sZ

t

v(t; y)dF [1](y) ¡
h
1 ¡ F [n ¡ 1](s)

i
~B (s) ¡

sZ

t

~B (y)dF [n ¡ 1](y).

The…rst term of the RHS refers to the value of the object when the highest bid
is submit ted. The second term refers to the payments made in case the lowest
bid is submit ted, and the third term refers to the expected payments in case
another bidder submits a lower bid. The FOC of the equilibrium is given by

v(t; t)f [1](t) + f [n ¡ 1](t) ~B (t) ¡
h
1 ¡ F [n ¡ 1](t)

i
~B 0(t) ¡ f [n ¡ 1] ~B (t) = 0. (12)

With somemanipulat ion, we get

~B (t) = ~B (t) +
tZ

t

v(y; y)f [1](y)
1 ¡ F [n ¡ 1](y) dy

or, equivalent ly

B (t) = B (t)
1 ¡ ' (n ¡ 1) +

1
1 ¡ ' (n ¡ 1)

tZ

t

v(y; y)f [1](y)
1 ¡ F [n ¡ 1](y) dy.

The only best response of a bidder with signal t, given that the outcome of the
auct ion is e¢ cient , is to bid zero, so that B (t) = 0. The SOC is ful…lled, as

sign
µ
@U(t; s)
@s

¶
= sign

µ
@U(t; s)
@s ¡ @U(s; s)

@s

¶
= sign(v(t; s) ¡ v(s; s)) = sign(t ¡ s):
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An immediate consequence of the fact that v(y; y) > 0 for all y > t (by Value
Monotonicity) is that the bid funct ion B (t) is st rict ly increasing in t, which is
the assumpt ion we started with.

In Proposit ion 5, weestablish that thepresenceof a perfect resalemarket has
no in‡uence on equilibrium behavior. This result follows from our companion
paper, where we derive that any Bayesian Nash equilibrium of any auct ion
(without resale market ) which leads to an e¢ cient assignment of the object ,
is also a Bayesian Nash equilibrium when the same auct ion is followed by a
resale market where the same bidders part icipate. As B const itutes an e¢ cient
Bayesian Nash equilibrium, the proposit ion must be t rue.

Proposit ion 5 The bid function B described in Proposition 4 establishes a
Bayesian Nash equilibrium of the lowest-price all-pay auction when this auction
is followed by a (perfect) resale market with the same bidders participating.

The opt imality of the lowest -price all-pay auct ion immediately follows.12

Proposit ion 6 Consider a Double Coasean World. Suppose that in the lowest-
price all-pay auction, bidders play according to the equilibrium bid function given
in Proposition 4. Then the lowest-price all-pay auction is optimal.

Proof. Theequilibrium bid funct ion of the lowest -priceall-pay auct ion given
in Proposit ion 4 is an e¢ cient Bayesian Nash equilibrium, in which theexpected
ut ility of the lowest type is zero. By Proposit ion 5, this is st ill an equilibrium
when the auct ion is followed by a resale market , so that the expected ut ility of
the lowest type remains zero. Then, by Lemma 2, with rest rict ions (10) and
(11), the lowest -price all-pay auct ion is opt imal.

Corol lar y 7 Consider a Double Coasean World. Then the highest possible ex-
pected revenue is strictly increasing in ' . In an optimal auction, a bidder’s
expected uti li ty is independent of ' .

Proof. Follows immediately from Lemmas 1 and 2, Proposit ions 4-6, and
the fact that the lowest-price all-pay auct ion is e¢ cient with zero expected
ut ility for the lowest type.

12In the light of Myerson and Sat terthwaite (1983), t he assumpt ion of a per fect resalemarket
seems rather st rong. However, if MR Monotonici ty holds, the assumpt ion of a perfect resale
market can be relaxed to allow for any type of resale market . In our companion paper we
show that auct ions with e¢ cient equilibria st ill have an equilibrium with e¢ cient bidding in
case of a resale market . Therefore, when MR Monotonici ty is sat is…ed, Lemma 2 implies that
every e¢ cient auct ion with zero ut ility for the lowest type (which includes the lowest -price
all-pay auct ion) is opt imal under the rest rict ion that the seller cannot keep the object .
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5 The M yersonean Wor ld
Consider a Myersonean World. As said, Lemma 2 implies that a feasibleauct ion
mechanism is opt imal when it yields zero expected ut ility for the lowest type,
leaves the object in the hands of the seller when all marginal revenues are
negat ive, and assigns theobject to thebidder with thehighest marginal revenue
otherwise. Consider two-stage auct ion mechanism ¡ . In the…rst stage of ¡ , the
bidders are asked whether or not to part icipate. If at least one of the bidders
refuses to part icipate, thegameends, and theseller keeps theobject . Otherwise,
each bidder pays the seller the sameentree fee, which wedenote by ©. Then the
bidders enter the second stage, and play the lowest -price all-pay auct ion with
reserve priceR. Each bidder follows the st rategy to choose “ part icipate” in the
…rst stage, and to play according to a Bayesian Nash equilibrium in the second
stage.

The lowest -price all-pay auct ion with a reserve price R has the following
rules. Each bidder either submits a bid of at least R, or abstains from bidding.
If all bidders abstain, the object remains in the hands of the seller, otherwise it
will be sold to the bidder with the highest bid. In the case of t ies, the winner
is chosen from the highest bidders with equal probability. All bidders who
submit ted a bid pay the auct ion price, which is equal to the lowest submit ted
bid in case all bidders submit a bid, and equal to R otherwise.

Proposit ion 8 shows that the lowest -price all-pay auct ion has an equilibrium
in which, up to a threshold typebt, bidders do not submit a bid, and all bidders
with a type t ¸ bt bid h(t;bt), with

h(t;bt) ´ R + 1
(1 ¡ ' (n ¡ 1))

tZ

bt

v(y; y)f [1](y)
1 ¡ F [n ¡ 1](y) dy:

We derive h using the same di¤erent ial equat ion as for the lowest -price all-pay
auct ion without a reserve price, with boundary condit ion h(bt;bt) = R. Observe
that h(t;bt) is st rict ly increasing in both t and ' . In equilibrium, a type bt is
indi¤erent between bidding R and submit t ing no bid.

Proposit ion 8 Let BR (t), the bid of a bidder with signal t, be given by

BR (t) ´
½
h(t;bt) for t ¸ bt
“ no bid” for t < bt,

where bt is the unique solution to

btZ

t

v(bt; y)dF [1](y) = R: (13)

Then BR constitutes a symmetric Bayesian Nash equilibrium of the lowest-price
all-pay auction with a reserve price R.

13



Proof. Assume that a threshold type bt exists such that in equilibrium, all
types t < bt abstain from bidding, and all types t ¸ bt bid according to h. It is
st raight forwardly veri…ed that h(¢;bt) sat is…es (12) with the boundary condit ion
h(bt;bt) = R. In equilibrium, bt must be indi¤erent between not bidding and
bidding R. Hence

' RN (R) = ¡ R + ' RN (R) +
btZ

t

v(bt; y)dF [1](y); (14)

where N (R) is the expected number of the other bidders who submit a bid.
(14) is equivalent to (13). Since v is st rict ly increasing in its …rst argument (by
Value Monotonicity), (13) has a unique solut ion for bt. It is then standard to
check that no type has an incent ive to deviate from the equilibrium.

Proposit ion 9 shows that when MR Monotonicity is sat is…ed, ¡ is opt imal
if the entry fee is given by (15).13 In an opt imal auct ion, the seller’s revenue is
st rict ly increasing in ' , and a bidder’s expected ut ility does not depend on ' :

Proposit ion 9 Consider a Myersonean World. Suppose that MR Monotonicity
is satis…ed. Let the entry fee in ¡ be given by

© ´ u
1 ¡ ' (n ¡ 1) , (15)

where u is the expected uti lity of the lowest type in the lowest-price all-pay auc-
tion when the equilibrium of Proposition 8 is played. Also, suppose that the
reserve price R is such that for the threshold type bt M R(bt) = 0 holds, that all
bidders choose “ participate” in equilibrium, and that bidders play according to
the equilibrium given in Proposition 8. Then ¡ is optimal.

Proof. According to the equilibrium de…ned in Proposit ion 8, all types
above bt submit a bid according to a strict ly increasing bid funct ion. All types
below bt abstain from bidding. Let p¤ be the allocat ion rule of the feasible
direct revelat ion mechanism related to the lowest -price all-pay auct ion with the
speci…ed reservepriceand thegiven equilibrium. Then, by MR Monotonicity, p¤

maximizes Et f
nP
i = 1

M Ri (t )pi (t )g over all feasible direct revelat ion mechanisms

(p; x). Moreover, by de…nit ion of ©, the expected ut ility of bidder i ’s lowest
type equals zero over both stages of ¡ , as

u + '
X

j 6= i
© ¡ © = 0.

13The assumpt ion ' 2 [0; 1
n ¡ 1 ) is crucial for Proposit ion 9. I f ' > 1

n ¡ 1 ; t he seller can
establish an arbit rarily high revenue by a take-it -or-leave-it o¤er to all bidders, in which he
asks an arbit rarily high ent ry fee ~©. T he take-it -or-leave-it o¤er is such that only if every
bidder accepts to pay the fee, the seller collect s the payments. I t is a dominant st rategy
for every bidder to accept the mechanism, since part icipat ion gives a ut ility larger than zero
( ~©[¡ 1 + ' (n ¡ 1)] > 0).
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The given st rategies const itute a Bayesian Nash equilibrium, and when these
are played, ¡ maximizes (4). Therefore, ¡ is opt imal.

Corol lar y 10 Consider a Myersonean World. Suppose that MR Monotonicity
is satis…ed. Then the highest possible expected revenue is strictly increasing in
' . In an optimal auction, a bidder’s expected uti li ty is independent of ' .

Proof. Follows immediately from Lemmas 1 and 2, and Proposit ions 8 and
9.

6 Concluding remarks
In this paper, wehave invest igated opt imal auct ionswith …nancial externalit ies.
We have established the opt imality of the lowest-price all-pay auct ion in this
environment. In a DoubleCoasean World, the lowest-price all-pay auct ion itself
is opt imal. In a Myersonean World, wehave found an opt imal two-stageauct ion
mechanism in which each bidder pays an entry fee, and plays the lowest -price
all-pay auct ion with a reserve price.

Goeree and Turner (2001) study opt imal auct ions in an environment that
is related to ours. In Goeree and Turner’s model, bidders receive (potent ially
di¤erent) shares of the seller’s revenue. The seller’s net revenue is opt imized
under the restrict ion that the seller cannot withhold the object . Goeree and
Turner de…ne an auct ion, called the all-pay-all auction, in which each bidder’s
payment is a weighted sum of all bids, which depends on all bidders’ shares in
the seller’s revenue. Goeree and Turner show that with symmetric bidders, the
all-pay-all auct ion is opt imal. Moreover, with equal shares, Goeree and Turner
prove the opt imality of the lowest -price all-pay auct ion in their environment.

So far it ’s unclear whether there exists an auct ion in our environment (per-
haps having the same structure as the all-pay-all auct ion), which is opt imal
when we allow for asymmetric …nancial externalit ies. A major advantage of the
lowest-price all-pay auct ion over the all-pay-all auct ion is that the rules of the
lowest-price all-pay auct ion are context independent , in contrast to the rules of
the all-pay-all auct ion. The rules of both auct ion games do not depend on the
dist ribut ion funct ion F or the value funct ions v. However, the rules of the all-
pay-all auct ion do depend on the bidders’ shares of the seller’s revenue, whereas
the rules of the lowest -price all-pay auct ion do not .

Jehiel et al. (1996) study opt imal auct ions in environments with allocat ive
externalit ies, i.e., environments in which a loser’s ut ility depends on the iden-
t ity of the winner (not on how much she pays). They derive the opt imality
of a feasible auct ion mechanism which is similar to two-stage feasible auct ion
mechanism ¡ . In the…rst stage of this feasible auct ion mechanism, bidders are
asked whether to part icipate or not . In the second stage, depending on which
bidders part icipate, the object remains in the hands of the seller, or is allocated
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to one of the bidders. Each part icipat ing bidder receives (pays) money from
(to) the seller.

It remains an open quest ion whether the lowest -price all-pay auct ion per-
forms well in pract ice. The auct ion seems to be very sensit ive for collusion.
Moreover, apart from the e¢ cient equilibrium, the lowest -price all-pay auct ion
also has highly ine¢ cient equilibria in the case of two bidders. It is easily ver-
i…ed that there is an equilibrium in which one bidder submits a very high bid,
and the other bids zero.14 An experimental study may put some light on this
matter.
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