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Abstract

We construct optimal auctions when bidders face ..nancial external-
ities. In a Coasean World, in which the seller cannot prevent a perfect
resale market, nor withhold the object, the lowest-price all-pay auction
is optimal. In a Myersonean World, in which the seller can both prevent
resale after the auction, and fully commit to not selling the object, an op-
timal two-stage mechanism isderived. Inthe ..rst stage, bidders are asked
to pay an entry fee. In the second stage, bidders play the lowest-price all-
pay auction with a reserve price. In both worlds, the expected revenue is
increasing in the ..nancial externality, and each bidder’s expected utility
is independent of the ..nancial externality.

Keywords: Optimal auctions, ..nancial externalities, lowest-price all-
pay auction, Coasean World, Myersonean World.

JEL classi..cation: D44

1 Introduction

We will consider the problem of a seller who wishesto sell one indivisible object
in an optimal auction in an environment with ..nancial externalities. An optimal
auction is a feasible auction mechanism that maximizes the seller’s expected
revenue. To get an idea about the environment, imagine that two ..rms bid
for a license to increase their capacity in the market in which they compete.
When ..nancial markets are assumed not to work perfectly, the winner is able
to invest less, the higher the price it paysin the auction. Thisis an advantage
to the losing ..rm, so that the losing .rm’s utility depends on the payments
made in the auction by the winner. Throughout the paper, we will refer to the
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edect of other bidders’ payments on a bidder’s utility as a ..nancial externality.’
Especially in high stake auctions, like the UMTS auctions that took place in
Europein 2000 and 2001, ..nancial externalities may infuence bidding behavior
(Maasland and Onderstal, 2002; Bérgers and Dustmann, 2001).

Myerson (1981) initiates research on optimal auctions in an environment
without ..nancial externalities.?3 He derives three important results. The ..rst
isthe celebrated Revenue-Equivalence Theorem, which states that the expected
utility of both the bidders and the seller is completely determined by the alloca-
tion rule of the feasible auction mechanism and the utilities of the lowest types.
Werefer to thisresult asthe Weak Revenue-Equivalence Theorem. Second, with
symmetric bidders, all standard auctions yield the same expected revenue. We
refer to this result as the First Strong Revenue-Equivalence Theorem. T hird,
with symmetric bidders, all standard auctions are optimal when the seller im-
poses the same, optimal reserve price. We refer to this result as the Second
Strong Revenue-Equivalence Theorem.*

With asymmetric bidders, under a regularity condition, Myerson shows that
the optimal auction assigns the object to the bidder with the highest marginal
revenue, provided that the highest marginal revenue is nonnegative. In case all
bidders have a negative marginal revenue, the seller keeps the object. Moreover,
the utilities of the lowest typesin an optimal auction are equal to zero. For this
result, Myerson assumes that (1) the seller can prevent resale of the object
after the auction, and (2) he can fully commit to not selling the object. The
..kst assumption is made, as the seller may need to misassign the object, i.e.,
assign it to a bidder who does not have the highest value for it. The second
assumption is made, as the seller may optimally withhold the object when only
low valued bidders participate. When these assumptions hold, we will speak of
a Myersonean World.

Ausubel and Cramton (1999) argue that sometimes the assumption of a
Myersonean World is not realistic, and study optimal auctions in a setting in
which (1) the seller cannot prevent the object changing hands in a perfect re-
sale market,® and (2) he cannot commit to keeping the object. We will refer
to this setting as a Double Coasean World, as the ..rst assumption is related
to the Coase Theorem (Coase, 1960), and the second to the Coase Conjecture
(Coase, 1972). Haile (1999) proves that, with symmetric bidders, equilibrium
bidding in standard auctions does not change when bidders are ocered a re-

"In our companion paper (Maasland and Onderstal, 2002), we study equilibrium behavior
in ..rst-price and second-price sealed-bid auctions in an environment with ..nancial external-
ities. Theories of equilibrium bidding in related environments can be found in Engelbrecht-
Wiggans (1994), and in Bulow et al. (1999).

2Independently and simultaneously, Riley and Samuelson (1981) derive similar results.

SMyerson (1981) was followed by, among others, Engelbrecht-Wiggans (1988), Cremer and
McLean (1985, 1988), Maskin and Riley (1989), McAfee and Reny (1992), and Bulow and
Klemperer (1996).

“Myerson does not mention this result explicitly, but it follows from his study. Riley and
Samuelson (1981) explicitly derive the result in an independent private values model.

51n a perfect resale market, the object, when being sold in the auction, always ends up in
the hands of the bidder with the highest value.



sale market opportunity after the auction. With this result, the Third Strong
Revenue-Equivalence Theorem can bederived: In a Double Coasean World, with
symmetric bidders, all standard auctions (without reserve price) are optimal.

In this paper, we modify Myerson’s modd by allowing for ..nancial externali-
ties, given by an exogenous parameter ' . We assume a model with independent
private signals. The model has independent private values models and pure
common value models as special cases. With symmetric bidders, thismodel isa
special case of the a¢ liated private signals model of Milgrom and Weber (1982).
We will show that with ..nancial externalities, the Weak Revenue-Equivalence
Theorem remains valid. Also the conditions for optimality remain the same as
in Myerson.

Our companion paper (Maasland and Onderstal, 2002) showsthat the strong
revenue-equivalence results are not valid when bidders are confronted with ..~
nancial externalities. The First Strong Revenue-Equivalence Theorem does not
hold as in the case of two bidders, the ..rst-price sealed-bid auction yields less
expected revenue than the second-price sealed-bid auction. The driving force
behind thisresult isthat the expected utility of the lowest typein the ..rst-price
auction is higher than the expected utility of the lowest typein the second-price
auction. The Second Strong Revenue-Equivalence Theorem does not hold for
two reasons. First, a standard auction with reserve price gives the lowest type
strictly positive expected utility because of the payments by others. Second,
the .rst-price sealed-bid auction and the second-price sealed-bid auction may
not have equilibria in which active bidders submit bids according to a func-
tion that is strictly increasing in their type, so that the winner of the object
is not always the bidder with the highest marginal revenue. The Third Strong
Revenue-Equivalence Theorem fails to hold as in both the ..rst-price and the
second-price sealed-bid auction, the lowest type gets a strictly positive expected
utility.

In theremainder of the paper, we will show the optimality of the lowest-price
all-pay auction when we take a symmetry assumption. (Goeree and Turner,
2002, derive a similar result in a related environment.) In Section 4, we solve
the seller’s problem in a Double Coasean World. We start with this setting, as
it ismore straightforward to ..nd an optimal auction herethan in a Myersonean
World. We derive that the lowest-price all-pay auction is optimal, as the lowest
type gets zero expected utility. In Section 5, we ..nd a two-stage feasible auction
mechanism which solvesthe seller’s problem in a Myersonean World. Inthe.rst
stage, all bidders pay an entry fee, in order to make sure that the lowest type
gets zero expected utility. If at least one of the biddersindicate not to be willing
to accept the entry fee, the séller keeps the object, and no payments are made.
Otherwise, in the second stage, the lowest-price all-pay auction with a reserve
priceis played. The optimality of the lowest-price all-pay auction with a reserve
price follows from the observation that, if it assigns the object, it always assigns
the object to the bidder with the highest marginal revenue. In both worlds, in
an optimal auction, the highest possible expected revenue is strictly increasing
in', and a bidder’s expected utility is independent of ' .



2 The model

Consider a seller, who wishes to sell one indivisible object to one out of n risk
neutral bidders, numbered 1;2;::;;n. Theseller aimsat ..nding a feasible auction
mechanism which gives him the highest possible expected revenue. We assume
that the seller does not attach any value to the object. Each bidder i receives a
one-dimensional private signal t;. (We also say that “bidder i is of typet;”.) t;
is drawn, independently from all the other private signals, from a distribution
function F;. F; has support on the interval [L;fi], and continuous density f;
with f;(t;) > 0, for every t; 2 [t;;{;]. De..ne the sets

T [ttlg g it

and
T £ieiltystl,
with typical dementst * (tq;:5t) and t,; © (tq; ot 15tie 155 th) respec-
tively. Let
Y
a(t) fi(t)

be the joint density of t, and let
gityi)" i)

be the joint density of t; ;.

The value of the object for a bidder isde..ned as a function of her own signal,
and the signals of all the other bidders. Denote by v;(t) the value for bidder i
given that the vector of typesist. We make the following assumptions on the
functions v; .8

Value Dixerentiability: v; is dicerentiable in all its arguments, for all i;t.

Value Monotonicity: vi(t) , 0; %5t > 0; and @’éf(i” .0, foralli;j;t.

5

Value Direrentiability ensures the existence of each bidder’s marginal rev-
enue (which will bede..ned later). Value Monotonicity indicatesthat all bidders
are serious, and that bidders values are strictly increasing in their own signal,
and weakly increasing in the signals of the others.

SMyerson (1981) uses the following value functions:
X
vi(t) " ti + g (tj);
i6i

where g is the revision erect function related to bidder j, with g : [t ;ii1! <. These value
functions are not necessarily included in our model.



In Sections 4 and 5, we make the following extra assumption.

Symmetry: Fy = F; for all i;j, and vi (it sty ) = v (st ooty ) for
all ti; ;05

Symmetry may be crucial for the existence of e¢ cient equilibria in standard
auctions.” Value Dizerentiability, Value Monotonicity, and Symmetry together
ensure that the bidder with the highest signal is also the bidder with the high-
est value, so that these assumptions imply that the seller assigns the object
e¢ ciently if and only if the bidder with the highest signal getsit.

When Symmetry holds, let F © Fy = ::= F,,f " fy=m=1,,1" t,=
i=t,,and T’ Ty = = 1,. Also, wewill let Fl'l and f [ (FIni 1] and f [ni 1)
denote the cumulative distribution function and density function of max;e 1 t;
(minjg1t;). Finally, let us de..ne v(y;z) as the expected value that bidder i
assigns to the object, given that her signal isy, and that the highest signal of
all the other biddersis equal to z.

v(y;z) " By vi(D)iti = y; l’jneaith = z]:

With Symmetry, this modd is a special case of the a¢ liated signals mode of
Milgrom and Weber (1982).

Throughout the paper, we use the following de. .nition of bidder i’s marginal
revenue.

17 Fi(t) @(t)
fi(ti) @

This expression can be derived, like in Bulow and Roberts (1989) (for inde-
pendent private values) and Bulow and Klemperer (1996) (for independent pri-
vate signals), from the monopolist’s problem in third-degree price discrimina-
tion. This can be done by constructing bidder i’s demand curve from her value
function and signal distribution function, and dixerentiate the related monop-
olist’s pro.t function with respect to quantity. When Symmetry is satis..ed,
let MR(t) " MR¢(t) = i = MRu(t). We make the following assumption on
MR;.

MRi(t) © vi(t) i

MR Monotonicity: M R;(t) is strictly increasing in t; for all i;t.

MR Monotonicity is equivalent to the assumption made in standard micro-
economic theory that the monopolist’s demand curve is downward-sloping.

The bidders are risk-neutral expected utility maximizers. In order to incor-
poratethe ..nancial externalities, weinsert an exogenous nonnegative parameter

“Klemperer (1998) shows that a slight asymmetry in value functions may have dramatic
exects on bidding behavior in the English auction in a(n almost) common value setting. Al-
though e¢ ciency isnot an issue with (almost) common values, theresult showstheimportance
of symmetry in value functions. Maskin and Riley (2000) study the exect of asymmetric dis-
tributions on bidding behavior in the ..rst-price and the second-price sealed-bid auction, and
show that the equilibrium of the ..rst-price auction is ine¢ cient.



' into the bidders’ utility functions. This parameter indicates each bidder’s in-
terest in the others' payments. The utility of bidder i is
X
Vii xj+' Xj
j6i

when i wins the object, and
X
P Xi+' X
j6i

when i does not win the object, with x; the payment by bidder j to the seller.
We assume ' 2 [0;m1—1).8

3 Weak revenue equivalence

Using the Revelation Principle of Myerson (1981), we may assume, without loss
of generality, that the seller only considers feasible auction mechanisms in the
class of feasible direct revelation mechanisms.® Let (p;x) be a feasible direct
revelation mechanism, with

p:T! [0;1]";

where
X
p(t) - 1,

and

x:T! <"
Weinterpret pi(t) astheprobability that bidder i wins, and x; (t) asthe expected
payments by i to the seller when t is announced.
Bidder i’s utility of (p;x) givent is given by
X
vithpi(t) i xit)+" x(t);

j6i

so that bidder i’sinterim utility of (p;x) can be written as

8In case' 2 [ ;ni1—1), a bidder’s interest in his own payments is larger than his interest
in the payments by the other bidders. In footnote 13, we will discuss the consequences of
allowing ' to be larger than n|1_1

9A feasible direct revelation mechanism is an auction mechanism in which each bidder is
asked to announce his type, which satis..es individual rationality conditions, incentive com-
patibility conditions, and straightforward restrictions on the allocation rule.



z X
Ui(p;x;ti) ~ vi(Dpi(t) i xi(t) +" Xj (t)1g; i (t; i)dt; i, (1)
_ s

with dt, ; = dty:dt; qdtis 1:dtn.
Similarly, the seller’s expected utility of (p;x) is

’ Z X]
Uo(p; x) xi(t)g(t)dt;
T i=1
with dt = dtq::dty,.
The following two lemmas will be used to solve the seller’s problem.

Lemma 1 Let (p;x) be a feasible direct revelation mechanism. Then the in-
terim utility of (p;x) for bidder i is given by

Zi
Ui(p;x;ti) = Ui(p;x;t) + - wi(si)dsi, (2
4
with
wi(ti) "~ Ey, JQ(U%@Q-

Proof. Incentive compatibility implies
Ui(p;x;si) , Ui(psx;ti) + Er  fpi(t)(vi(sisty i) i vi(t))g
for all s, t and t, ;, or, equivalently

@QJ; (p; x; t)

@ = Etiifpi(t)—lg=Wi(ti), (3

at all points where p; is direrentiable in t; (by Value Dixerentiability, v; is
dinerentiable at any tj). By integration of (3), we get (2). m

Lemma 2 Let (p;x) be a feasible direct revelation mechanism. The seller’s
expected revenue from (p; x) is given by

)
E-)

Eif  MRi(t)pi(t)gi 1 Ui (p; x;1;)

Uo(p;x) = —1= =

19 "(nj 1) )



Proof. De..ne

y4
Xi© xi(t)g(t)dt, (5)
z
Vi vi(t)pi(t)g(t)dt, (6)
T
and
y4
Yi o Ui(psx;ti)f(ti)dt;. (7)
Ti
By (1), we have, for all i,
X
Yi=Vii Xj+' Xj. (8)
j6i

Addingthe equationsin (8) over i and rearranging termsimpliesthat the seller’s
expected revenue from a feasible direct revelation mechanism (p; x) is given by
P P
X . 1Vi i 1Yi
Uo(p; X) = Xi="2"— 1= 9
o) = Xi = Sy (9)

Taking the expectation of (2) over t; and using integration by parts, we
obtain

Emummmm=umxm+aﬁﬂi%ﬂmmm

with
@y (t)

wi(ti) © Ey, ifpi(t)Tg,

so that (4) follows with (9) and (5)-(7). =

From Lemmas 1 and 2, it immediately follows that the Weak Revenue-
Equivalence Theorem remains valid with ..nancial externalities.

Corollary 3 Both the seller’s and the bidders’ expected utility from any feasible
auction mechanism is completely determined by the probability function p and
the utilities of the lowest types U; (p; x;1;) for all i related to its equivalent feasible
direct revelation mechanism (p;x).

Observe from Lemmas 1 and 2 respectively that, provided that the expected
utility of the lowest type remains zero when ' is varied, a bidder’s interim



utility does not depend on ' , whereas the seller’s expected revenueisincreasing
in ' . An intuition for the ..rst observation is the following. Suppose that
bidders, instead of receiving ..nancial externalities, obtain a fraction ' of what
the other bidders pay in the auction. Then Myerson (1981) shows that the
interim utility of a bidder does not depend on ' . From a bidder’s perspective,
these two situations are equivalent, and the observation follows immediately.
Theintuition for the second observation follows from the ..rst. Fix the payments
of all bidders. Then a bidder’s expected utility increases with ' . Therefore, to
make sure that a bidder’s interim utility does not depend on ', her expected
payment must increase as well.

From Lemma 2, interesting insights can be drawn with respect to optimal
auctions. Observe that in the expression for the seller’s expected revenue, a
key role is played by the marginal revenues of the bidders. Suppose that the
seller ..nds a feasible auction mechanism that assigns the object to the bid-
der with the highest marginal revenue, provided that the marginal revenue is
nonnegative, and that leaves the object in the hands of the seller if the highest
marginal revenueis negative. Suppose also that thisfeasible auction mechanism
gives the lowest types zero expected utility. Then, under MR Monotonicity,'°
with the individual rationality constraints U;(p;x;t;) , O, this feasible auction
mechanism is optimal. In Section 5, we will discuss this observation in more
detail, and we will show how the seller can construct an optimal auction in an
environment with ..nancial externalities.

4 The Double Coasean World

For the remainder of the analysis, we assume that Symmetry holds. Consider
the lowest-price all-pay auction, which has the following rules. All bidders si-
multaneously and independently announce a bid to the seller. The bidder who
announces the highest bid gets the object, with ties being broken among the
highest bidders with equal probability. Each bidder has to pay the lowest sub-
mitted bid. We will show now that in a Double Coasean World, the lowest-price
all-pay auction is optimal.

Recall that a Double Coasean World is a situation in which (1) the seller
cannot prevent a perfect resale market, and (2) the seller cannot withhold the
object. These assumptionsimposetwo extrarestrictions on the seller’s problem,
namely

forall t and i, pi(t) > O only if tj = maxt; (10)
J

and

X
for all t, pi(t) =1 (11)

10T his assumption is needed for incentive compatibility considerations. See Myerson (1981)
for a further discussion on the consequences of relaxing this assumption.



respectively. In fact, theserestrictions . x pi(t) (apart from the zero mass events
ti = tj for somei and j) in such a way that the object is always assigned to the
bidder with the highest signal.

Asrestrictions(10) and (11) . x theallocation rulep, by Lemma 2, a su¢ cient
condition for the optimality of a feasible auction mechanism is that the lowest
types expect zero utility (from the auction plus resale market). The lowest-price
all-pay auction is a natural candidate to ful..l this requirement. To see this,
suppose that in equilibrium, the auction is e¢ cient, and that a bidder with
the lowest type considers to bid b. Then, as the equilibrium is e¢ cient, all the
other bidders have to pay b. The expected utility of the lowest type equals
i b+ (nj 1)' b, which is strictly negative for all b> 0 when ' 2 [0;f'|i1_1)'
Therefore, the lowest type prefersto bid zero, so that she obtains zero expected
utility, as when she is present, each bidder pays zero in the auction.

Proposition 4 characterizes the symmetric equilibrium for the lowest-price
all-pay auction. By a standard argument, the equilibrium bid function must
be strictly increasing and continuous. Let U(t;s) be the utility for a bidder
with signal t who behaves as if having signal s, whereas the other bidders play
according to the equilibrium bid function. A necessary equilibrium condition is
that

@QJ(t;s)
@

at s = t. From this condition, a dizerential equation can be derived, from which
the equilibrium bid function is uniquely determined (at least if we restrict our
attention to dixerentiable bid functions). Observe that indeed the lowest type
bids zero, that the equilibrium is e¢ cient, and that bids increase with ' .1

=0

Proposition 4 Suppose that all bidders submit a bid according to the following
bid function.

1 z v(y;y)f M(y) dy:
(1§ "(nj 1))t 1§ Frit(y) 7

B(t) =

Then B constitutes the unique symmetric dixerentiable Bayesian Nash equilib-
rium of the lowest-price all-pay auction. The outcome of this auction is e¢ cient.

Proof. The following observationsimply that a symmetric equilibrium bid
function must be strictly increasing and continuous. First, a higher type of a
bidder cannot submit a lower bid than a lower type of the same bidder. (If
the low type gets the same expected surplus from strategies with two dixerent

"In case of a uniform signal distribution on the interval [0; 1], independent private values,
and two bidders, the unique symmetric dicerentiable Bayesian Nash equilibrium of the lowest-
price all-pay auction is established by

B(t) = 1%.“ ti log(1i DI

10



probabilities of being the winner of the object, the high type strictly prefers
the strategy with the highest probability of winning, so that the high type will
not submit a lower bid than the low type.) Second, B(t) cannot be constant
on an interval [t%t®. (By bidding slightly higher, t© can largely improve its
probability of winning, while only marginally infuencing the payments by her
and the other bidders.) Third, B(t) cannot be discontinuous at any t. (Suppose
that B(t) makesajump frombtobat t. A typejust abovet® hasan incentiveto
deviatetob. Doing so, sheisableto substantially decrease the expected auction
price, while just dightly decreasing the probability of winning the object.)

We proceed assuming a strictly increasing and dixerentiable equilibrium bid
function. The probability of having the lowest bid for a bidder with signal t is
equal to 1§ F[Mi (1), If x is the auction price, then, in terms of utility, each
bidder loses (1 ' (nj 1))x: De..ne

B(s)" (17 '"(nj 1)B(s),

and U(t;s) as the expected utility of a bidder with type t who misrepresents
herself as type s given that the other bidders report truthfully. Then,

ZS h | ZS

Ut;s) = v(ty)dFti(y); 15 FiY(s) B(s)i  B(y)dFIM T(y).

t t
The .rst term of the RHS refers to the value of the object when the highest bid
is submitted. The second term refers to the payments made in case the lowest

bid is submitted, and the third term refers to the expected payments in case
another bidder submits a lower bid. The FOC of the equilibrium is given by

h i
vit; M) + £ TBt) ;15 FEN@) Bt fiUB(t) = 0. (12)

With some manipulation, we get

2 Wyt y)
1i Flnii(y)

t

B(t) = B(H) + dy

or, equivalently

By, 1 Dyt
Tt ) 1 t(ng 1) 1 Fi(y)

B(t) = dy.

The only best response of a bidder with signal t, given that the outcome of the
auction is eg¢ cient, isto bid zero, so that B(t) = 0. The SOC isful.lled, as

l Hajts) @i(ss)l

P = sign
= S9 @ | T @

@

sign = sign(v(t;s) i v(s;s)) = sign(tj s):

11



An immediate consequence of the fact that v(y;y) > O for all y > t (by Value
Monotonicity) is that the bid function B(t) is strictly increasing in t, which is
the assumption we started with. =

In Proposition 5, we establish that the presence of a perfect resale market has
no infuence on equilibrium behavior. This result follows from our companion
paper, where we derive that any Bayesian Nash equilibrium of any auction
(without resale market) which leads to an eg¢ cient assignment of the object,
is also a Bayesian Nash equilibrium when the same auction is followed by a
resale market where the same bidders participate. As B constitutes an e¢ cient
Bayesian Nash equilibrium, the proposition must be true.

Proposition 5 The bid function B described in Proposition 4 establishes a
Bayesian Nash equilibrium of the lowest-price all-pay auction when this auction
is followed by a (perfect) resale market with the same bidders participating.

The optimality of the lowest-price all-pay auction immediately follows.'?

Proposition 6 Consider a Double Coasean World. Suppose that in the lowest-
price all-pay auction, bidders play according to the equilibrium bid function given
in Proposition 4. Then the lowest-price all-pay auction is optimal.

Proof. Theequilibrium bid function of the lowest-price all-pay auction given
in Proposition 4 isan eg cient Bayesian Nash equilibrium, in which the expected
utility of the lowest type is zero. By Proposition 5, this is still an equilibrium
when the auction is followed by a resale market, so that the expected utility of
the lowest type remains zero. Then, by Lemma 2, with restrictions (10) and
(11), the lowest-price all-pay auction is optimal. m

Corollary 7 Consider a Double Coasean World. Then the highest possible ex-
pected revenue is strictly increasing in ' . In an optimal auction, a bidder’s
expected utility is independent of ' .

Proof. Follows immediately from Lemmas 1 and 2, Propositions 4-6, and
the fact that the lowest-price all-pay auction is e¢ cient with zero expected
utility for the lowest type. m

2|n thelight of Myerson and Satterthwaite (1983), the assumption of a perfect resale market
seems rather strong. However, if MR Monotonicity holds, the assumption of a perfect resale
market can be relaxed to allow for any type of resale market. In our companion paper we
show that auctions with e¢ cient equilibria still have an equilibrium with e¢ cient bidding in
case of aresale market. Therefore, when MR Monotonicity is satis..ed, Lemma 2 implies that
every e¢ cient auction with zero utility for the lowest type (which includes the lowest-price
all-pay auction) is optimal under the restriction that the seller cannot keep the object.

12



5 The Myersonean World

Consider a Myersonean World. Assaid, Lemma 2 impliesthat afeasible auction
mechanism is optimal when it yields zero expected utility for the lowest type,
leaves the object in the hands of the seller when all marginal revenues are
negative, and assignsthe abject to the bidder with the highest marginal revenue
otherwise. Consider two-stage auction mechanism j . In the..rst stageof j, the
bidders are asked whether or not to participate. If at least one of the bidders
refusesto participate, the game ends, and the seller keepsthe object. Otherwise,
each bidder paysthe sdller the same entree fee, which we denote by ©. Then the
bidders enter the second stage, and play the lowest-price all-pay auction with
reserve price R. Each bidder follows the strategy to choose “participate” in the
..kst stage, and to play according to a Bayesian Nash equilibrium in the second
stage.

The lowest-price all-pay auction with a reserve price R has the following
rules. Each bidder either submits a bid of at least R, or abstains from bidding.
If all bidders abstain, the abject remains in the hands of the sdller, otherwise it
will be sold to the bidder with the highest bid. In the case of ties, the winner
is chosen from the highest bidders with equal probability. All bidders who
submitted a bid pay the auction price, which is equal to the lowest submitted
bid in case all bidders submit a bid, and equal to R otherwise.

Proposition 8 shows that the lowest-price all-pay auction has an equilibrium
in which, up to a threshold type B bidders do not submit a bid, and all bidders
with atypet , Pbid h(t;B, with

Zt
b - 1 viy:nftiy) o
e T T TR s

We derive h using the same direrential equation as for the lowest-price all-pay
auction without a reserve price, with boundary condition h(BB = R. Observe
that h(t;B is strictly increasing in both t and ' . In equilibrium, a type Pis
indicerent between bidding R and submitting no bid.

Proposition 8 Let BR(t), the bid of a bidder with signal t, be given by
Y2

BR(t) - ht;p  fort, b

“nobid” fort<®

where Pis the unique solution to

z°
v(By)drFll(y) = R: (13)

t

Then BR constitutes a symmetric Bayesian Nash equilibrium of the lowest-price
all-pay auction with a reserve price R.
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Proof. Assume that a threshold type Pexists such that in equilibrium, all
typest < Pabstain from bidding, and all typest , Bbid according to h. It is
straightforwardly veri..ed that h(¢B satis..es (12) with the boundary condition
h(BB = R. In equilibrium, P must be indizerent between not bidding and
bidding R. Hence

Zb
"RN(R)=j R+ "'RN(R)+ v(by)dFl(y); (14)

t

where N (R) is the expected number of the other bidders who submit a bid.
(14) is equivalent to (13). Sincev is strictly increasing in its ..rst argument (by
Value Monotonicity), (13) has a unique solution for B It is then standard to
check that no type has an incentive to deviate from the equilibrium. m

Proposition 9 shows that when MR Monotonicity is satis..ed, | is optimal
if the entry fee is given by (15).'® In an optimal auction, the seller’s revenue is
strictly increasing in ' , and a bidder’s expected utility does not depend on ' :

Proposition 9 Consider a Myersonean World. Suppose that MR Monotonicity
is satis..ed. Let the entry feein j be given by

, u

S TR 1
where u is the expected utility of the lowest type in the lowest-price all-pay auc-
tion when the equilibrium of Proposition 8 is played. Also, suppose that the
reserve price R is such that for the threshold type PM R(B = 0 holds, that all
bidders choose “participate” in equilibrium, and that bidders play according to
the equilibrium given in Proposition 8. Then j is optimal.

Proof. According to the equilibrium de..ned in Proposition 8, all types
above P submit a bid according to a strictly increasing bid function. All types
below P abstain from bidding. Let p* be the allocation rule of the feasible
direct revelation mechanism related to the lowest-price all-pay auction with the
speci..ed reserve price and the given equilibrium. Then, by MR Monotonicity, p°

maximizes E;f MR, (t)pi(t)g over all feasible direct revelation mechanisms

i=1
(p;x). Moreover, by de..nition of ©, the expected utility of bidder i’s lowest
type equals zero over both stages of j , as

X
u+' ©j ©=0.
j6i

3T he assumption ' 2 [O;ni1—1) is crucial for Proposition 9. If ' > ni1—1; the seller can
establish an arbitrarily high revenue by a take-it-or-leave-it ozer to all bidders, in which he
asks an arbitrarily high entry fee ©. The take-it-or-leave-it oxer is such that only if every
bidder accepts to pay the fee, the seller collects the payments. It is a dominant strategy
for every bidder to accept the mechanism, since participation gives a utility larger than zero

(G 1+ (ni 1)]>0).
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The given strategies constitute a Bayesian Nash equilibrium, and when these
are played, | maximizes (4). Therefore, | isoptimal. m

Corollary 10 Consider a Myersonean World. Suppose that MR Monotonicity
is satis..ed. Then the highest possible expected revenue is strictly increasing in
', In an optimal auction, a bidder’s expected utility is independent of ' .

Proof. Follows immediately from Lemmas 1 and 2, and Propositions 8 and
9 =

6 Concluding remarks

In this paper, we have investigated optimal auctions with ..nancial externalities.
We have established the optimality of the lowest-price all-pay auction in this
environment. In a Double Coasean World, the lowest-price all-pay auction itself
isoptimal. In a Myersonean World, we have found an optimal two-stage auction
mechanism in which each bidder pays an entry fee, and plays the lowest-price
all-pay auction with a reserve price.

Goeree and Turner (2001) study optimal auctions in an environment that
isrelated to ours. In Goeree and Turner’s model, bidders receive (potentially
dizerent) shares of the seller’s revenue. The seller’s net revenue is optimized
under the restriction that the seller cannot withhold the object. Goeree and
Turner de..ne an auction, called the all-pay-all auction, in which each bidder’s
payment is a weighted sum of all bids, which depends on all bidders’ shares in
the sdller’s revenue. Goeree and Turner show that with symmetric bidders, the
all-pay-all auction is optimal. Moreover, with equal shares, Goeree and Turner
prove the optimality of the lowest-price all-pay auction in their environment.

So far it’s unclear whether there exists an auction in our environment (per-
haps having the same structure as the all-pay-all auction), which is optimal
when we allow for asymmetric ..nancial externalities. A major advantage of the
lowest-price all-pay auction over the all-pay-all auction is that the rules of the
lowest-price all-pay auction are context independent, in contrast to the rules of
the all-pay-all auction. The rules of both auction games do not depend on the
distribution function F or the value functions v. However, the rules of the all-
pay-all auction do depend on the bidders’ shares of the seller’s revenue, whereas
the rules of the lowest-price all-pay auction do not.

Jehiel et al. (1996) study optimal auctions in environments with allocative
externalities, i.e., environments in which a loser’s utility depends on the iden-
tity of the winner (not on how much she pays). They derive the optimality
of a feasible auction mechanism which is similar to two-stage feasible auction
mechanism j . In the ..rst stage of this feasible auction mechanism, bidders are
asked whether to participate or not. In the second stage, depending on which
bidders participate, the object remainsin the hands of the seller, or is allocated
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to one of the bidders. Each participating bidder receives (pays) money from
(to) the seller.

It remains an open question whether the lowest-price all-pay auction per-
forms well in practice. The auction seems to be very sensitive for collusion.
Moreover, apart from the e¢ cient equilibrium, the lowest-price all-pay auction
also has highly ineg cient equilibria in the case of two bidders. It is easily ver-
i..ed that there is an equilibrium in which one bidder submits a very high bid,
and the other bids zero.'* An experimental study may put some light on this
matter.
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